四年级下册《平均数》数学教案

时间:2022-05-30 19:11:21 教案 投诉 投稿
  • 相关推荐

四年级下册《平均数》数学教案(精选10篇)

  平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。下面我们来看看四年级下册《平均数》数学教案,仅供大家参考!

四年级下册《平均数》数学教案(精选10篇)

  四年级下册《平均数》数学教案 篇1

  教学目标

  1.知识与技能。

  了解并熟记平均数概念及运算方法。

  2.过程与方法。

  理解平均数的意义并掌握如何求得一组数据的平均数的一般方法。

  3.情感态度与价值观。

  通过平均数概念和性质的探究,使学生能够利用它解决一些实际问题,发展自身的数学应用能力。

  教学过程

  一、情景导入,新知探究。

  1.一年中北京的气温变化的幅度与上海的气温变化的幅度比较,哪里的气温变化幅度大?你知道如何通过计算比较这两地气温变化幅度的大小吗?

  北京得气温变化大,通过两地得最高气温和最低气温温差计算比较得出。

  2.表1给出了某户居民2005年下半年的电话费用,请你帮这户居民算一算:平均每月花费了多少元电话费?

  表1某户居民2005年7-12月电话费用统计表

月份789101112
电话费(元)75.804576.3065.955.9045.90

  (75.80+45+76.30+65.9+55.90+45.90)÷6=60.80(元)。

  二、例题讲解。

  每3秒呈现10个数字,淘气小朋友5次记住数字得情况统计表

次数第一次第二次第三次第四次第五次
记住数字的个数54759

  ①淘气能记住几个数字?

  淘气平均每次记住6个数字。

  ②平均每次记住6个数字是怎么的出来的?

  平均数每次记住数字的个数为:(5+4+7+5+9)÷5=6(个)。

  ③淘气哪一次也没有记住6个数字啊!这是怎么回事?

  “6个”是几次“匀”出来得。平均数是一组数据平均水平得代表。

  ④说一说生活中你在哪里见到过平均数。

  我们班同学得平均身高、这个月得平均气温。

  四、实际应用。

  小明期中考试,语文、数学、科学三门的平均分是91分,其中语文考了89分,英语考了91分,小明期中考试数学考了多少分?

  解:由题知总分为91×3=273(分)

  所以数学考了273-89-91=93(分)

  答:小明期中考试数学考了93分。

  五、习题巩固。

  1.下面是科技馆一星期售出门票情况统计表。

时间星期一星期二星期三星期四星期五星期六星期日
售票∕张7006409109901300

  (1)估一估前5天平均每天大约售票多少张。

  一定比640大,比1300小。

  大约900张。

  (2)星期六售出门票1700张,星期日售出门票1460张。这个星期售票张数的平均值与5天的平均数相比,有什么变化?

  这星期售票张数的`平均数:(700+640+910+990+1300+1700+1460)÷7=1100(张)。

  这星期售票张数的平均值比5天得平均数大。

  2.小熊冷饮店又该进冰糕了,小熊翻开了本月前3周卖出冰糕情况记录,第一周7箱,第二周8箱,第三周9箱,那么小熊本周进多少冰糕合适呢?

  按平均数进货比较保险,每周都在增加,第四周还可以增加一箱。那么本周可以进冰糕10箱。

  六、课后拓展。

  1.在一分投球比赛中。奇思前后4次投中的个数分别为7个、7个、6个、8个。用什么数可以表示奇思投中的个数?

  用平均数可以表示奇思投中得个数。

  2.下表是某地一星期的气温记录。请你分别算出这星期最高气温和最低气温得平均值。

时间星期一星期二星期三星期四星期五星期六星期日平均值
最低气温/°C810111211121311
最高气温/°C1818202224202521

  3.一农机站有960千克的柴油。用了6天,还剩240千克。照此用法,剩下的柴油还可以用几天?

  解:由题知可用6天平均用柴油:(960-240)÷6=120(千克)

  按照每天用120千克算还可以用:240÷120=2(天)

  答:照此用法,剩下的柴油还可以用2天。

  七、小结。

  通过本节课得学习,我们学会了如何看图表以及平均数得计算原理,加深了对平均数的理解,重在计算和生活上得应用。

  四年级下册《平均数》数学教案 篇2

  教学目标

  1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。

  2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。

  3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。

  学情分析

  通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?

  事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。

  于是,教师将备课的思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。

  重点难点

  教学重点理解平均数的含义,掌握平均数的求法。

  教学难点理解平均数的统计意义。

  教学过程

  活动1【活动】一、建立意义

  (一)体验平均数的代表性

  1.谈话:

  (1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。

  (2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)

  2.提问:

  (1)我们俩谁投篮的水平更高一些?为什么?

  预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。

  小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。

  (2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?

  预设:直接将两位老师每次投篮的个数进行比较,得出结论。

  提问:为什么直接比5和3?

  小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。

  提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?

  【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】

  (二)强化对平均数意义的理解

  1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。

  2.提问:

  (1)你们说于老师再投一次的话,会不会对我目前投篮的成绩有影响?

  (2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)

  (3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?

  (4)你认为在这种情况下应该怎么比?

  (5)我平均每次投中了几个?

  a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。

  b.谁愿意跟大家交流一下自己的想法?

  方法一:移多补少

  预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。

  谈话:你这个办法可真好!这样一移实际就是把几次不相等的'数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)

  【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】

  方法二:先合后分

  提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?

  预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。

  谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)

  小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。

  提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?

  【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】

  活动2【讲授】二、深化理解

  提问:

  1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?

  2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)

  3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?

  4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的理解。】

  活动3【练习】三、拓展提升

  (一)进一步丰富学生对平均数的理解

  1.估计平均数(课件出示)

  提问:

  (1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?

  (2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?

  (3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?

  【设计意图:在估计的过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】

  2.判断直条所在位置(课件出示)

  提问:

  (1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。

  (2)来选一个代表,谁愿意告诉大家为什么在红线的下面?

  【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】

  (二)利用平均数解决问题(课件出示)

  1.平均身高

  提问:

  (1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?

  (2)那平均身高是160厘米是每个人都是160厘米吗?

  (3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?

  【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】

  2.平均水深(课件出示)

  (1)提问:

  a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)

  b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?

  c.冬冬的身高不是已经超过平均水深了吗?

  (2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)

  (3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。

  【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】

  四年级下册《平均数》数学教案 篇3

  一、单元教学内容

  平均数与条形统计图

  二、单元教学目标

  1、理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。

  3、在体验数据的收集、整理、描述和分析的过程中,发现信息进行简单的数据分析,并进行有条理的思考。

  4、体会统计在现实生活中的作用,运用已经掌握的知识解决生活中简单的数学问题。

  5、体会数学知识与实际生活的紧密联系,激发学习兴趣,培养细心观察的良好学习习惯。

  6、发展统计观念,培养自主探究的能力及合作意识。

  三、单元教学重、难点

  理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。

  四、单元教学安排

  3课时

  第1课时

  平均数

  一、教学内容:

  平均数

  二、教学目标

  1、经历探索平均数的过程,学会寻找平均数的方法移多补少、先总后分,理解平均数的含义。

  2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  三、教学重难点

  重点:理解平均数的含义。难点:会简单的求平均数的方法。

  四、教学准备多媒体课件

  五、教学过程

  (一)导入新授

  1、课件出示:班级图书角的书架上层有8本书,下层有4本书。

  提出问题:同学们能帮忙重新整理一下,使每层书架上的书一样多吗?

  2、学生思考,交流讨论。

  师生交流后,教师用课件操作并提问:现在每层都有6本书了,这个6是它们的什么数?(平均数)我们是如何求出平均数6的呢?

  师生交流后明确是通过把上层书本移2本至下层得到的相同数。今天,我们就来深度认识一下“平均数”这个朋友。板书课题:平均数。

  (二)探索发现

  1、教学例1。

  (1)课件出示教材第90页例1统计图:环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。

  师:从统计图中,你能获得哪些数学信息?

  学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。

  师:根据数学信息,你能提出什么数学问题?教师从学生提出的问题中选择求平均数的问题。

  (2)解决问题:平均每人收集了多少个矿泉水瓶?

  师:你是怎样理解“平均每人收集多少个”的?你会解决这个问题吗?如何解决?小组交流探讨。教师巡视指导。

  (3)汇报展示。

  汇报预测:方法一:移多补少,学生汇报,多媒体演示移多补少的过程。

  师:像这样,把多的矿泉水瓶移出来,补给少的',使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。13是14、12、11,15的平均数。

  方法二:根据总数量÷总份数=平均数,得。(14+12+11+15)÷4=52÷4=13(个)。

  (4)小结:我们可以用移多补少的方法求平均数。也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。

  (5)教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的?

  师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。

  (6)区分“平均分”和“平均数”。

  ①把52个矿泉水瓶平均分给4个人,每人分得几个?

  ②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗?师生交流后小结:平均分是实实在在的量,平均数是虚拟的量。2、教学例2。

  (1)创设问题情境。

  四(1)班第4小组男生队和女生队进行踢毽比赛,我们来看看他们的比赛情况。课件出示教材第91页的情境图和两张统计表。

  师:这两张统计表给出了他们踢毽的成绩。观察两张表,你能从中知道些什么?(参加人数、每人的踢键个数等)

  (2)探索解决问题。

  提出问题:你认为是男生队的成绩好一些还是女生队的成绩好一些呢?说说你的理由。让学生充分从多个角度分析表示男、女生队的踢毽情况。在尝试中体会到用平均数能较好地说明问题。

  学生动手列式计算:

  男生队:(19+15+16+20+15)÷5 =85÷5 =17

  女生队:(18+20+19+19)÷4 =76÷4 =19

  (3)全班汇报交流。

  师:为什么男生队除以5而女生队是除以4呢?你认为是男生队还是女生队成绩好?师生交流后明确:因为男生队有5人,所以要除以5,而女生队只有4人,所以除以4。男生队平均每人踢17个,女生队平均每人踢19个,女生队的成绩好一些。

  师:问题解决了吗?你有什么收获?

  师生交流后明确:用求平均数的方法来分析得到的数据,常常能反映一般情况,帮助我们解决问题。

  (三)巩固发散

  1、指导学生完成教材第92页“做一做”。

  学生独立完成,集体交流时说一说自己是如何求出平均数的。

  2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?

  3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的结果即为平均数。

  (五)板书设计

  六、教学后记

  略

  平均数

  求平均数的方法:

  数据较少:移多补少法常用方法:总数÷份数=平均数

  第2课时

  复式条形统计图

  一、教学内容

  复式条形统计图

  二、教学目标

  1、在数据的收集、整理、描述和分析的过程中,进一步体会统计在生活中的作用,体会数学与生活的密切联系。

  2、认识两种形式的复式条形统计图,能根据统计图提出并回答问题,能发现信息并进行简单的数据分析。

  3、通过对生活事例的调查,激发学习兴趣,培养学生细心观察的良好习惯,以及合作意识和实践能力。

  三、教学重难点

  重点:正确画出复式条形统计图。

  难点:根据统计图发现信息、分析信息,提出并回答简单的实际问题。

  四、教学准备

  多媒体课件、彩笔、直尺、三角板。

  五、教学过程

  (一)导入新授

  你们知道中国有多少人吗?那你们知道自己所在的区有多少人吗?(学生回答)下面我们一起对收集到的信息进行整理和分析。

  (二)探索发现

  1、教学纵向单式条形统计图。

  (1)课件出示教材第95页例3某地区城乡人口统计表。

  提出问题:怎样才能清楚地表示这个地区这几年城镇和乡村的人数变化呢?学生交流后,得出可以制作统计图来表示。让学生根据教师提供的统计表,分别完成某地区城镇和乡村人口的纵向单式条形统计图。

  (2)展示学生绘制的统计图。

  提出问题:从这两个统计图中,你能获得哪些信息?

  师:如果我要很快地知道xx年与xx年中城镇人口与乡村人口的变化情况?那该怎么办?学生讨论,汇报。引导学生把两个统计图并列排放来比较,并思考怎样把它们合并起来。

  2、教学纵向复式条形统计图。

  (1)提出问题:如何才能把两个单式条形统计图合并成一个统计图呢?学生在小组内交流探讨,试着绘制统计图。教师巡视指导。

  (2)展示学生绘制的复式条形统计图。

  讨论交流:复式条形统计图与单式条形统计图有什么区别与联系?让学生先独立思考,然后把自己的想法与小组内其他同学交流。

  (3)全班交流、汇报。

  通过小组合作交流复式与单式条形统计图的联系与区别,使学生认识到为了区分两个内容,采用不同颜色的长方形来表示。

  (4)分析复式条形统计图。

  从这个统计图中你获得了哪些信息?

  小结时可引导学生通过观察统计图发现:该地区近年来城镇人口逐年增加,农村人口逐年下降,人口总数逐年上升,同时对学生进行人口教育。

  3、教学横向复式条形统计图。

  (1)出示教材第96页不完整的横向复式条形统计图。让学生独立把横向复式条形统计图补充完整。

  (2)展示作品。

  请你说一说,横向复式条形统计图应该怎样绘制?

  师生交流后明确:这个统计图中横轴表示人数,纵轴表示的是年份,所以画出的条形是横向的。

  (3)分析横向复式条形统计图。

  从这个统计图中你获得了哪些信息?让学生分别说一说,然后进行小组交流。

  (4)比较纵向与横向复式条形统计图。

  师:我们已经认识了两种复式条形统计图,即:纵向复式条形统计图和横向复式条形统计图,请同学们对比这两种统计图,思考:丙种复式条形统计图有什么区别与联系?

  师生交流后小结:这两种复式条形统计图只是形式上的不同,当数据种类不多,但是每类数据又比较大时,用横向条形统计图表示更方便。

  4、即时练习。

  指导学生完成教材第97页“做一做”。

  学生根据统计表,完成统计图。并回答统计图后的问题。

  (三)巩固发散

  市场甲、乙两种品牌的果汁饮料一、二、三月销售情况如下表。请你动手绘制统计图并回答下列问题。

  2、如果你是超市的经理,下个月应该怎么进货?

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:本节课学习并掌握了两种形式的复式条形统计图的绘制方法。

  (五)板书设计复式条形统计图

  六、教学后记

  略

  第3课时

  营养午餐

  一、教学内容

  营养午餐

  二、教学目标

  1、了解营养与健康的常识,培养运用简单的排列组合、统计知识解决问题的能力。

  2、能根据营养专家的建议运用正确的数学思想方法分析调配科学、合理的午餐菜式。

  3、明确科学、合理的饮食的重要性,养成良好的饮食习惯。

  三、教学重难点

  重点:培养学生分析整理数据、运用数据解决问题的能力。难点:科学分析结果,合理安排搭配方案。

  四、教学准备多媒体课件

  五、教学过程

  (一)导入新授

  你们平时喜欢吃哪些菜?这些菜搭配是否合理?今天我们就一起来研究这个问题。板书课题:营养午餐。

  (二)探索发现

  1、自主配餐。

  (1)出示教材第101页情境图。让学生根据要求自主选择一份菜谱。

  (2)全班交流,展示学生的搭配方案。

  2、科学评判。

  (1)介绍科学的配餐要求:我们点的菜是否符合营养学标准呢?“不应低于”、“不超过”是什么意思?用数学符号应该怎样表示?

  (2)了解每份菜中热量、脂肪和蛋白质的含量情况。出示每份菜的热量、脂肪和蛋白质含量表。

  3、小结。

  我们在进行午餐营养判断时既要看热量又要看脂肪,只有两种指标都不超量时才能算是营养的午餐。

  (三)巩固发散

  1、学习合理搭配。

  如果让你动手搭配菜谱,你会了吗?每人只搭配一组就行。要求:在这十种菜中任选三种搭配一起,营养一定要合理。分组讨论,集体汇报。各组派代表汇报本小组的搭配方案。

  2、小结。

  师生共同分析总结营养搭配的要求:荤素搭配,营养均衡。

  3、统计全班同学喜欢的菜谱。

  (1)男女生各选一个代表收集数据,教师记录。

  (2)学生根据统计表完成复式条形统计图。

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  (五)板书设计营养午餐

  热量不低于2926千焦脂肪不超过50g荤素搭配,营养均衡。

  六、教学后记

  略

  四年级下册《平均数》数学教案 篇4

  教学内容:

  教材第90页例1、第92页“做一做”第1题和第93页练习二十二的1-3题。

  教学目标:

  1、结合具体情境,在动手操作、观察、讨论等活动中理解平均数的意义,知道求平均数的方法。

  2、初步学会简单的数据分析,灵活运用平均数相关的知识解决简单的实际问题,进一步体会统计在现实生活中的作用。

  3、在轻松愉快的活动中体会运用知识解决问题成功的愉悦,增强学生学习数学的兴趣和学好数学的自信心。

  重点难点:

  1、理解平均数的意义,理解并掌握求平均数的方法。

  2、理解并掌握求平均数的方法。

  教学准备:

  多媒体课件,有关平均数的数据统计表。

  情景导入:

  师:同学们,我今天带来了一些我们生活学习中的信息,请看屏幕。(课件出示信息)

  (1)四(1)班踢毽子的4位选手平均每人1分钟踢50个。

  (2)一年级第一小组的3位男生的平均身高是120厘米。

  (3)三年级平均每个班开展了3项课间活动。

  (依次出示信息,分别请3名同学读题,其他同学认真的看屏幕并倾听)

  师:同学们,在这些信息中都用到了同一个词,你们发现了吗?

  生:都有“平均”这个词。(课件再次用红色显示信息中的“平均”)

  师:对,(指着50个,120厘米,3项,课件同时用粉色显示这些数据)这些数据都是“平均数”。(板书课题:平均数)

  师:看到这个课题,你想通过今天的学习了解那些知识?

  生:平均数是一个什么数?

  生:平均数与平均分有什么关系?

  生:怎样计算平均数?

  生:平时在生活中那些地方常用平均数?

  ……

  师:让我们带着这些问题来研究今天的知识。

  [设计意图:选取学生熟悉的数学信息,让学生感知平均数,激发学习兴趣,培养问题意识,感受数学与生活的密切联系。]

  新课讲授:

  (一)平均数的意义

  通过课前的导入,大家说一说什么叫平均数?学生讨论后交流。师归纳:平均数是指在一组数据的平均值。

  (二)平均数的求法

  教学例:出示例1情景图。

  1、分析问题

  师:这个月我校开展了保护环境,争优环保小卫士的活动,大家看看这是我班一个小队同学收集的矿泉水瓶。课件出示相关情景和统计表,学生读题。

  师:你看到什么信息?

  生:我知道了这个小队有四位同学。

  生:我知道了小红收集了14个、小兰12个、小亮11个、小明15个。

  生:要求平均每个人收集了多少个矿泉水瓶?

  师:什么是平均?

  生:平均就是指每个人一样多。

  师:那大家想想,应该怎样求这个小队平均每人收集多少个瓶子?

  生:可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了。

  生:把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止。

  生:可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的.瓶子数量。

  2、方法总结

  师:请看屏幕(课件出示主题图),这是他们4人收集瓶子的简单统计图,你能发现什么数学信息吗?

  生:他们不一样多。

  师:那怎么办呢?

  生:可以通过移动瓶子来解决。

  师:怎样移动?

  生:将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多。同时利用书本等器材进行简单操作,并交流方法。

  师:通过刚才的操作,想一想:你为什么要把小红的瓶子移给小兰?

  生:小红的多,小兰的少。

  师:他是把多的移给少的,这样每个人收集的瓶子数量就怎么样了?

  生:同样多。

  师:刚才这几位同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少法”。

  (板书“移多补少法”)

  师:还有没有其他的方法呢?请说一说。

  生:有,可以用平均分的方法来解决。

  师:怎么算呢?

  生:先算他们的总数再除以4。

  师:你可以把你的想法告诉大家,并把算式写在黑板上吗?

  生:(14+12+11+15)÷4=52÷4=13(个)

  师:指着算式(14+12+11+15)÷4,我们来看看这位同学的方法?请你说说你是怎么想的。

  生:我是先把他们4个人收集的瓶子总数加起来,再平均分成4份或我是先算他们一共收集了多少个瓶子,再算平均每个人收集多少个瓶子。

  师:听懂了吗?谁和他的方法一样?再给大家说一说。(学生交流)

  师:会用这种方法的同学请举手?我们一起来算一算,结果是多少,学生在练习本上列式计算。

  师:52表示什么?

  生:4个人收集瓶子的总数。

  师:是呀,是把小红他们4人收集瓶子的总数量先求出来,是52个。(教师板书“总数量”)

  师:为什么要再除以4?

  生:把总数平均分给4个人,就是求出了平均每人收集了13个。

  生:平均分成4份,4表示总份数。

  师:4就是总份数,除以4表示平均分成4份,这13个就是他们每个人收集瓶子数量的平均数。(板书“平均数”)

  师:那么用式子怎么表示呢?

  生:平均数=总数量÷总份数。

  师:真不错,大家鼓励一下,向他学习。师小结:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。板书:平均数的求法:(1)移多补少。(2)平均数=总数量÷总份数。

  [设计意图:联系学校生活实际,利用活动课创设问题情境,引发探究兴趣,在学生理解平均数意义的基础上,让学生通过动手算一算,发现求平均数的方法,经历数学概念、方法形成的过程,使学生初步理解了求平均数的两种不同方法。]

  课堂作业:

  1、完成教材第92页“做一做”第1题。理解怎样使每个花瓶里的花相等是求平均数。学生独立完成后交流。

  2、完成教材第93页练习二十二的第1题。学生独立完成后集体订正。

  课堂小结:

  通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。

  课后作业:

  1、完成教材第93页练习二十二第2-3题。

  2、完成练习册本课时练习。

  四年级下册《平均数》数学教案 篇5

  设计理念

  《义务教育数学课程标准(2011年版)》指出,解决问题要让学生初步学会从数学的角度发现问题,提出问题,并能综合运用所学的知识和技能解决问题,密切数学与生活的联系,增强学生的应用意识,形成解决问题的一些基本策略,体验解决问题策略的多样性,培养简单的数据分析能力和运算能力,发展统计观念。

  教学内容

  人教版四年级下册第90页—92页“做一做”及练习二十二中部分习题。

  学情及教材分析

  学生在三年级已经学过简单的统计表,本节课是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法移多补少,引导学生进一步体会到平均数是解决问题的有效方法之一,以帮助学生灵活运用平均数的知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平分的求平均数一般方法的掌握。从整个小学阶段的数学学习来看,平均数是一个持续的学习内容,今后还要学习稍复杂的平均数以及其他常见的统计量。因此,我觉得这节课的目的不仅仅是让学生学会求简单的平均数,更要引导学生从数据处理分析的角度把握求平均数的方法,体会平均数的意义,用平均数进行比较,描述分析一组数据的状况和特征,感受平均数的应用价值。本节课是在学习认识简单统计表和条形统计图的基础上,教学最基础的数据整理分析,平均数的知识为今后进一步学习统计数据的分析和整理打下基础,新教材明显地加重了对平均数意义理解的份量,突出了平均数的统计学意义,既平均数反映了一组数据的整体水平。

  教学目标

  1.在具体情境中,通过实践操作和思考体会平均数的意义,能用自己的语言解释其意义,体会平均数的作用,感受求平均数是解决一些实际问题的需要,能计算平均数。

  2.运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计概念。

  3.在活动中,进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。

  教学重点

  理解平均数的实际意义,掌握求平均数的方法。

  教学难点

  体会平均数的特征,用平均数解释简单的生活现象。

  一、谈话引入,激发兴趣

  你乘车买票吗?六岁以前买票吗?你对乘车是否买票这方面的常识了解吗?我们把1.2米这条线叫“儿童乘车免票线”。看,就是这条线,经过相关部门研究决定,六岁以下儿童乘车免票线为1.2米。你知道怎么去确定这个标准吗?调查谁?如果数据来了,有高的,有矮的,如何处理?让我们一起通过这节课的学习来解决这些问题。

  (设计意图:通过学生熟悉的生活实例,让学生带着问题自然进入课堂,激发学生的学习兴趣,学生体会为什么要学  上个月我校开展了保护环境,争优环保小队活动,我班成立了三个小分队:快乐队、天使队、阳光队。

  1.相同数据,初步体会平均数的代表性。

  出示快乐队数据:宁宁12个,丁丁12个,冰冰12个。

  你能提出什么数学问题?要表示快乐队每个人的收集情况,用哪个数比较合适呢?

  小结:快乐队每人都收集了12个矿泉水瓶。12能代表快乐队每个人的收集情况。

  2.不同数据,深入体会平均数的意义。

  出示天使队数据:小红12个,小兰14个,小丽11个,小明15个。

  你看到了什么信息?你能提出什么问题?现在,每个人收集的数量各不相同,该用哪个数据代表第二小队每人的收集情况呢?14能代表吗?12呢?(如果每人同样多就好了)怎样把他们的瓶子变成同样多?

  小组合作学习,用学具摆一摆。并在组内说一说你是怎么把它们变的同样多的。

  交流汇报。

  学情预设:

  生1:可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,然后每个人就一样多了。(刚才这些同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少”。板书:移多补少)

  生2:计算的方法(14+12+11+15)÷4=13.说说你是怎么想的。

  (先把四个人的瓶子数合起来,再平均分给四个人)为什么要除以4?除以3可以吗?4表示什么。括号里的表示什么?关系式:总数量÷份数。板书:先求和再平分)

  总结:其实无论是移多补少,还是先求和再平分,目的只有一个,那就是使原来不同的数变得——同样多。在数学上,我们把这个数叫做平均数。(板书课题:平均数)

  3.追问中理解平均数的虚拟性。

  继续看天使队的收集情况:13是小红收集的数量吗?是小兰收集的数量吗?是小明收集的数量吗?

  13到底是什么呢?是哪个同学收集矿泉水瓶的数量吗?

  小结:13是天使队平均每人收集的数量。它代表天使队收集矿泉水瓶的一般水平。

  (设计意图:由浅入深,快乐队每人收集12个,用12代表每人的收集数量;天使队每人的数量各不相同,该用哪个数代表呢?学生体会到:都不合适,如果和快乐队一样,每人同样多就好了。通过移多补少或求和平分,用一个虚拟的13来代表。这样由浅入深、层层递进,让学生慢慢体会平均数良好的代表性。在追问中让学生感受平均数的虚拟性特征,以加深对平均数意义的理解。)

  二、在具体情境中体会平均数的作用

  出示阳光队收集矿泉水瓶统计表。阳光队一共收集了多少个?哪个小队能评为“环保小队”呢?和你的同桌说一说。

  学情预设:

  生1:快乐队收集了36个,天使队收集了52个,阳光队收集了60个,第三小队收集的多。

  生2:他们人数不同,这样不公平!

  生3:人数不同,应该比较平均数。怎么求阳光队的平均数呢?

  学生列式:(13+11+14+10+12)÷5=12(个)

  12代表什么?哪个小队能评为“环保小队”?

  小结:在人数不相等的情况下,用平均数作比较更公平!

  平均数13能代表天使队的一般水平,12能代表快乐队、阳光队的一般水平。(板书:反映一组数据的一般水平)

  (设计意图:人数不等,哪个队能评为“环保小队”?引导学生展开辩论。在辩论中学生清楚:比总数不公平,而平均数能代表每队收集的一般水平,所以用平均数作比较更公平。从而加深对平均数作用的理解。)

  思考交流,理解平均数的敏感性

  如果阳光小队的王林收集的瓶子变多了或变少了,平均数会怎样呢?你发现了什么?

  小结:平均数就是这么敏感!这组数据中任何一个数发生变化,都能引起平均数的变化。

  结合平均数观察表格,平均数处于什么位置呢?

  平均数正如你们所说,可以代表一组数的一般水平,而且知道平均数在值和最小值之间,相信大家对平均数有了一定的认识。

  首尾呼应,引起共鸣。

  相关部门是怎么确定这个儿童乘车免票线的呢?和你们想的一样,相关部门就是参照了平均身高确定免票线的。据统计:6岁男童平均身高119.3厘米,6岁女童平均身高118.7厘米。

  看来,平均数的作用真不小,连确定免票线的高度都可以参照它。

  联系生活,体会平均数的用途。

  生活中在哪儿用到过平均数呢?出示平均数资料。如果学校订做校服,用平均身高订做可以吗?平均数的用途很广泛,可是也要根据实际情况而定。

  三、应用拓展,巩固提高

  1、小明家每人每天月平均用水量是多少?

  在严重缺水地区平均每人每天用水量约为3千克,你知道3千克的水有多少吗?

  老师还给大家带来一则信息。

  请选择正确答案。(2)第(1)式和第(3)式分别求的是什么呢?

  小刚家平均每人每天用水88千克,严重缺水地区平均每人每天用水3千克,比较这两个数据,你有什么感受?

  2、小明会遇到危险吗?

  游泳池平均水深只有120厘米,小明身高130厘米,小明站在游泳池里学游泳,会不会有危险?为什么?

  四、回顾反思,结束全课

  谈谈你对这节课的收获,把你感受最深的一点说一说。

  五、板书设计

  六、教学反思

  《数学课程标准》中将“统计与概率”安排为一个重要的学习领域,强调要培养学生从统计的角度思考问题的意识,重要途径就是要在教学中着力展示统计的广泛应用。这是因为随着科学技术和数学本身的.发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。

  这节课着眼于经历、体验、感受平均数的产生,理解平均数的本质意义,关注的是学习过程,让孩子学会思考,学会解题的策略,更加关注学生的情感态度和价值观。通过小组合作学习,让孩子在活动中“做数学”,给孩子提供大量的讨论合作、独立探索、实践操作的时间和空间,充分发挥学生的主体作用,让孩子们在“做中学”。从而理解平均数的意义,掌握求平均数的方法。

  有关平均数的知识,教学中我没有只停留在“简单地给出若干数据,要求学生计算出它们的平均数”上,而是把理解平均数的意义作为教学的重点,紧密联系实际,课的导入用“儿童身高免票线”如何确定的问题串,使学生体会到为什么要学  怎样才能使四年级的小学生感受到学  最后,为了加深学生对平均数意义的理解及特征的把握,我联系学生生活实际,和开头相互呼应,学生梳理思路,明白了相关部门从调查收集数据——整理数据——求平均身高,最后呈现6岁以下儿童平均身高,因此确定“儿童乘车免票线”为120厘米。

  通过以上教学,使学生切实感受到数学的魅力与应用价值,为树立应用意识奠定了良好的基础,使学生初步形成了解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光观察世界,将数学课中的统计与生活有机的结合,体会到数学中的生活,生活中的数学,充分调动了学生学习的积极主动性。

  总之,新的课程改革要求我们老师要以学生的发展为本,要给孩子提供自主探索的时间和空间。在平均数的教学中,学生对平均数的认识,经历了从探索中发现,从发现中体验,从体验中发展的全过程。教师起到了一个组织者的作用,但交流者的作用体现不足,如能更好的与学生达到互动,能给孩子以富有个性的评价,相信效果会更好。在这节课中,学生一次又一次的认识了平均数,他们感到平均数就在身边,并获得了一次次成功的体验,学得兴趣盎然。

  四年级下册《平均数》数学教案 篇6

  一、 复习铺垫,导入新课

  小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

  出示动物寿命统计表:

  小猫老鼠大象乌龟

  寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

  谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

  【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

  二、 创设情境,自主探索

  1. 呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

  2. 引入平均数。

  出示男、女生套圈成绩统计图。

  ①提问:从统计图中,你知道了什么?

  结合学生的想法,相机进行引导。

  想法一:男生有4人,女生有5人。(为比较总数预设)

  想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。

  ②男生套得准一些还是女生套得准一些?你有什么方法?

  和你的同桌说说自己的想法。

  想法一:女生套得准一些,因为套中的最多的是吴燕。

  追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  ③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

  可以怎么办呢?

  想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

  追问:这样比公平吗?(公平)我们就用这种方法试一试。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4. 理解平均数。

  ④操作:你知道男生平均每人套中多少个圈吗?

  请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。

  学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

  ⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

  可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

  反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

  ⑥还有其他的方法吗?

  引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

  28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

  ⑨你能看出,7比谁套中的个数多?比谁套中的`个数少?

  小结:平均数比最大的数小,比最小的数大

  【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  ⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

  ⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

  30÷5=6(个)

  ⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

  ⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

  仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

  提问:现在你能判断男生套得准还是女生套得准吗?

  ⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

  相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

  ⑵平均数比最大的数小,比最小的数大大。

  ⑶平均数都是代表了一个整体的水平。

  不同:总数不同,人数不同,平均数也不同。

  四年级下册《平均数》数学教案 篇7

  导学内容:

  人教版小学数学教材第90~91页的例1、例2及相关内容。

  导学目标:

  1.使学生理解平均数的含义,初步学会计算简单的平均数的方法。

  2.感知平均数的范围。

  3.培养应用所学知识合理、灵活解决简单的实际问题的能力。

  导学重点:

  理解平均数的意义,掌握求平均数的方法。

  导学难点:

  理解平均数在统计学上的意义。

  教学准备:

  教师:多媒体;学生:收集自己的身高

  导学过程:

  一、预学--谈话导入

  师:期末考试成绩出来了以后,要想比较蓝鑫小组和长敏小组哪个小组的成绩好一些,怎么比较呢?

  生(预测):比较总分,看看哪个小组的总分高。

  生(预测):这样不公平,我们小组三个人,他们小组四个人。

  生(预测):应该比较平均成绩。

  师:对,应该比较他们两个小组的平均成绩。在我们数学的'统计中,平均成绩也有一个名字,它叫做平均数。

  每年的四月七日是世界卫生日,环境卫生对我们的身体起着至关重要的作用。为了保护环境,我们学校的环保小队利用周末的时间去收集了很多的废旧塑料瓶。出示图,你能提出哪些数学问题?

  平均数教案

  出示自学小贴士,学生独立完成:

  1、自己想办法找出这几位同学收集的废旧饮料瓶的平均数,你有几种方法来解决。

  2、这个平均数表示什么?它是不是实际每个人收集废旧饮料瓶的数量?

  3、平均数与这组数相比,你有什么发现?

  独立完成后组内做好分工,在组内交流,看谁说得好,看谁听得认真!

  二、互学--小组交流,展示点拨

  1、小组交流

  师:已经计算出来的同学,小组可以在小组里面交流一下你的方法,比一比看哪个小组做的又对又快!

  生(预测):可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了;

  生(预测):把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止,这样把小红的一个移给小兰,小明移两个给小亮,这样每个人就一样多了;

  生(预测):可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  2、展示点拨

  汇报预测:

  生1(预测):我们组认为可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多;

  此时可展示移动瓶子的过程;

  生2(预测):我还有一种方法,可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  生3(预测):平均数就是把收集瓶子的总数平均分给4个人,每个人得到的数量。它不是实际每个人收集废旧饮料瓶的数量;(二年级学习的平均分的知识)

  生4(预测):平均数与这组数据相比,它不等于少先队干部收集废旧瓶的实际数量,(它比最大的数字要小,比最小的数字要大,居于这两个数中间)。

  师通过超链接小明下水游泳的问题,学生通过题可知平均数非实际数量,它大于一组数最小的数,小于一组数中最大的数。

  讲解:想一想:为什么要把小红的瓶子移给小兰?(小红的多,小兰的少)这样把多的移补给少的,让每个同学的瓶子数量同样多,我们叫这种方法为“移多补少法”(板书“移多补少法”)。我们还有一种方法,(14+12+11+15)÷4=52÷4=13(个),就是先求出这四个人收集的瓶子的总数量52(板书总数量),然后在除以总份数4人(板书总份数),13表示什么意思?他们每个人收集瓶子数量的平均数(板书平均数)。那么这个式子应该怎么表示呢?(平均数=总数量÷总份数。)

  归纳整理,总结方法:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。平均数的求法:(1)移多补少;(2)平均数=总数量÷总份数。平均数的特征:它比一组数据中大于最小的数,小于最大的数,它表示统计对象的一般水平。平均数能较好地反映一组数据的总体情况。

  三、评学

  1、巩固反馈

  我们首先回到可得开始的时候这几位同学的介绍他们的身高,现在我们能计算出他们的身高了吗?(生齐做,选代表回答他的解答过程)

  下面是5位同学为灾区小朋友捐书的情况。

  姓名

  杨欣宇

  王 波

  刘真尧

  马 丽

  唐小东

  本数

  8

  6

  9

  8

  14

  平均每人捐了几本?

  (8+6+9+8+14)÷5

  =45÷5

  =9(本)

  2、拓展提升

  哪一组的成绩好?

  第一小组口算成绩表

  姓名

  孙红

  丁晓

  周玉

  李丹

  合计

  正确题数

  14

  10

  11

  9

  44

  第二小组口算成绩表

  姓名

  张华

  王明

  赵雪

  合计

  正确题数

  10

  12

  14

  36

  第一小组:(14+10+11+9)÷4 =11(道)答:第一组平均每人做对11道题。

  第二小组:(10+12+14)÷3 =12(道)答:第二组平均每人做对12道题。

  3、评价小结:

  通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。

  在我们生活中,平均数无处不在,请你读一读下面的话:

  1.春节期间丽江旅游人数平均每天为3万人。

  2.丽江旅游收入平均每天为500万元。

  3.丽江今年三月份平均每天气温是15摄氏度。

  4.我校三年级学生平均年龄是9岁。

  5.我校三(1)班平均身高是120厘米。

  6.王老师家2008年平均每月用电85千瓦时。

  7.西部最缺水的地区,平均每人每天用水只有3千克。

  附:板书

  平均数

  移多补少法:将小红移1个给小兰,小明移2个给小亮,最后每个人都是13个。

  平均分:平均数=总数量÷总份数

  (14+12+11+15)÷4 =52÷4=13(个)

  四年级下册《平均数》数学教案 篇8

  教学目标:

  (一)知识与技能

  理解平均数的意义,初步学会简单的求平均数的方法。

  (二)过程与方法

  学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

  (三)情感态度和价值观

  感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

  教学重点:

  掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。

  教学难点:理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。

  教学准备:多媒体课件

  教学过程:

  一、创设情境、生成问题

  师:生活中有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?今天我们就来探索平均数的奥秘。(板书:平均数)

  二、探索交流,解决问题

  1、平均数的意义和求法。

  师:读情境图,从图中知道了什么?你能根据统计图提出什么问题? (学生独立完成,小组交流,全班汇报)

  生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了14、12、11和15个塑料瓶。

  生2:所解答的问题是平均每人收集了多少个。

  师:你能解释“平均每人收集了多少个”的意思吗? (小组交流,全班汇报)

  生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。

  师:你能理解“同样多”是什么意思吗?

  生:每人收集的个数一样。

  师:那有什么方法能使每人收集的个数一样呢?

  生:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多。师:这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的平均数。

  师:还有其他方法能知道平均数吗?

  生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。

  师:请用算式表示出来。

  生:(14+12+11+15)÷4

  =52÷4

  =13(个)

  答:平均每人收集了13个。

  师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,它是不是每个人真正收集的矿泉水瓶数量?引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

  小结:平均收集13个矿泉水瓶,不是每个人真正收集的'数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

  刚刚我们初步学会了平均数的计算方法,接下来老师碰到了一个问题,你能帮我解决吗?

  2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)

  师:读图表,你能找出哪些数学信息?(学生独立完成,小组交流,全班汇报)

  生1:已知第4小组男生队和女生队踢毽比赛成绩表。

  生2:所求的问题是男、女两队,哪个队成绩好?(学生独立完成,小组交流,全班汇报)

  师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)

  生:男生队平均每人踢毽个数女生队平均每人踢毽个数

  (19+15+16+20+15)÷5 (18+20+19+19)÷4

  =85÷5 =76÷4

  =17(个) =19(个)

  17<19

  答:女生队的成绩好些。

  师:那我们来看看这两位小朋友做的。他们有什么不同的地方?你同意哪种方法?为什么呢?

  生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。

  师:对!在人数不等的情况下,用平均数表示各队的成绩更公平更好一些。

  师:那么问题来了,你觉得这个平均数会比原来的数的最大数大吗?会比最小的数小吗?

  三、巩固应用,内化提高

  在生活中我们也会遇到很多用到平均数的地方。接下来老师来考考你们学习的如何。

  四、作业

  1、做一做第1题

  2、判断题

  (1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。 ( )内容来自闪亮儿童网

  (2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。 ( )

  (3)小明所在的1班学生平均身高1、4米,小强所在的2班平均身高1、5米。小明一定比小强矮。 ( )

  3、做一做第2题

  4、游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?

  五、回顾整理反思提升

  师:通过本课学习,你有哪些收获?

  四年级下册《平均数》数学教案 篇9

  教学目标

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

  3、在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学规律的兴趣,积累积极的数学学习体验。

  教学重点:

  掌握求平均数的方法,“移多补少”先合并再平分“的实际意义和应用。

  教学难点:

  理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情境、生成问题

  师:今天上课前我想考考大家。

  (课件出示)一次数学测验中,班级平均分是90分,你猜猜这个班的马莉莉同学可能会得多少分?为什么?(小组学生讨论,全班交流)

  师:班级平均分是马莉莉的实际分数吗?如果不是,你知道“班级平均分是90分”是什么意思吗?

  师:生活中还有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?(板书:平均数)

  二、探索交流,解决问题。

  1、平均数的意义和求法。

  (课件出示教材第90页例1情境图)

  师:读情境图,你能找到哪些已知条件和所求问题?(学生独立完成,小组交流,全班汇报)

  生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了

  14、

  12、11和15个塑料瓶。

  生2:所解答的问题是平均每人收集了多少个。

  师:你能解释“平均每人收集了多少个”的意思吗?(小组交流,全班汇报)

  生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的`个数同样多。

  师:你能理解“同样多”是什么意思吗?在情景图中会表示出“同样多”吗?

  师:你是怎样表示出“同样多”的?

  生:通过“移多补少”的方法,达到每人收集的个数同样多。

  师:每人收集的个数同样多还可以怎样说?

  生:每人收集的个数同样多就是平均每人收集到的塑料瓶的个数。

  师:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的平均数。

  师:还有其他方法吗?

  生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。

  师:请用算式表示出来。

  生:

  (14+12+11+15)÷4 =52÷4 =13(个)答:平均每人收集了13个。

  师:谁能总结一下平均数的求法?

  生:平均数=总数量÷总份数

  师:这种求平均数的方法叫先合后分计算。

  2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)

  师:读图表,你能找出已知条件和所求问题吗?(学生独立完成,小组交流,全班汇报)

  生1:已知第4小组男生队和女生队踢毽比赛成绩表。

  生2:所求的问题是男、女两队,哪个队成绩好?

  师:“哪个队成绩好?”是什么意思?用什么成绩来比较?(预设答案,既可以用平均数来比,页可以用总数来比)

  生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。

  师:你能说出总成绩、每队人数和每队的平均成绩之间的关系吗?

  (学生独立完成,小组交流,全班汇报)

  生:每队的总成绩除以每队的总人数等于每队的平均成绩

  师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)

  生:男生队平均每人踢毽个数

  女生队平均每人踢毽个数

  (19+15+16+20+15)÷5(18+20+19+19)÷4 =85÷5=76÷4 =17(个)=19(个)17<19

  答:女生队的成绩好些。

  三、巩固应用,内化提高。

  练习二十二第1—3题

  四、回顾整理反思提升

  师:通过本课学习,你有哪些收获?

  四年级下册《平均数》数学教案 篇10

  教学目标

  1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数。

  2.培养学生分析、综合的能力和操作能力。

  3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣。

  教学重点

  明确求平均数与平均分的区别,掌握求平均数的方法。

  教学难点

  理解平均数的概念,明确求平均数与平均分的区别。

  教学步骤

  一、铺垫孕伏。

  1.小华4天读完60页书,平均每天读几页?

  2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

  3.小明和小刚的体重和是160斤,平均体重多少斤?

  师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.

  二、探究新知。

  1.引入新课.

  以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.

  今天我们共同研究一下求平均数问题.(板书课题:求平均数)

  2.教学例2.

  (1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

  (2)组织讨论:你怎样理解水面的平均高度?

  (3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

  (4)学生操作.

  请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.

  (5)学生汇报操作结果,一般出现两种方法.

  第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

  164=4厘米,得出每杯水水面的平均高度是4厘米.

  第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的.水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.

  (6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

  (7)引导学生列式计算.

  (6+3+5+2/4

  =164

  =4(厘米)

  答:这4个杯子水面的平均高度是4厘米.

  小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

  (8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

  明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

  (9)反馈练习。

  小强投掷三次垒球,每次的成绩分别:28米、29米、27米.求平均成绩。

  3.教学例3。

  (1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

  (2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?

  (3)根据讨论结果,明确先求出每组的平均身高,再进行比较。

  (4)列式计算。

  第一小组的平均身高是多少?

  (136+142+140+135+137+144)/6

  =8346

  =139(厘米)

  第二小组的平均身高是多少?

  (132+141+133+138+145+135+142)/7

  =9667

  =138(厘米)

  第一小组的平均身高比第二小组的高多少?

  139-138=1(厘米)

  答:第一小组平均身高高一些,高1厘米。

  (5)反馈练习。

  一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?

  三、课堂小结

  通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法。

  四、布置作业

  回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高。

【四年级下册《平均数》数学教案】相关文章:

四年级数学下册《平均数》教学设计(精选7篇)04-15

四年级下册数学教案12-30

四年级下册数学教案08-31

小学四年级下册数学教案01-14

人教版四年级下册数学教案01-21

《平均数》教案03-31

四年级下册数学教案 15篇02-02

四年级下册数学教案15篇02-04

四年级下册《优化》数学教案(精选6篇)05-20