高中数学教案

时间:2022-07-20 20:56:10 教案 投诉 投稿
  • 高中数学教案 推荐度:
  • 高中数学教案教学设计 推荐度:
  • 相关推荐

高中数学教案15篇

  作为一名人民教师,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么教案应该怎么写才合适呢?以下是小编整理的高中数学教案,仅供参考,大家一起来看看吧。

高中数学教案15篇

高中数学教案1

  【教学目标】

  1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  2.能根据几何结构特征对空间物体进行分类。

  3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

  【教学重难点】

  教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  教学难点:柱、锥、台、球的结构特征的概括。

  【教学过程】

  1.情景导入

  教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

  2.展示目标、检查预习

  3、合作探究、交流展示

  (1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

  (2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  (3)提出问题:请列举身边的棱柱并对它们进行分类

  (4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  (5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

  (6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  (7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  (1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

  (2)棱柱的任何两个平面都可以作为棱柱的底面吗?

  (3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  (5)绕直角三角形某一边的几何体一定是圆锥吗?

  5、典型例题

  例1:判断下列语句是否正确。

  ⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

  ⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

  答案 A B

  6、课堂检测:

  课本P8,习题1.1 A组第1题。

  7.归纳整理

  由学生整理学习了哪些内容

  【板书设计】

  一、柱、锥、台、球的结构

  二、例题

  例1

  变式1、2

  【作业布置】

  导学案课后练习与提高

  1.1.1柱、锥、台、球的'结构特征

  课前预习学案

  一、预习目标:

  通过图形探究柱、锥、台、球的结构特征

  二、预习内容:

  阅读教材第2—6页内容,然后填空

  (1)多面体的概念: 叫多面体,

  叫多面体的面, 叫多面体的棱,

  叫多面体的顶点。

  ① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱

  ②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥

  ③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。

  (2)旋转体的概念: 叫旋转体, 叫旋转体的轴。

  ①圆柱: 所围成的几何体叫做圆柱

  ②圆锥: 所围成的几何

  体叫做圆锥

  ③圆台: 的部分叫圆台

  . ④球的定义

  思考:

  (1)试分析多面体与旋转体有何去别

  (2)球面球体有何去别

  (3)圆与球有何去别

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  疑惑点 疑惑内容

高中数学教案2

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书

  2.高中数学教案格式

  一.课题(说明本课名称)

  二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

  三.课型(说明属新授课,还是复习课)

  四.课时(说明属第几课时)

  五.教学重点(说明本课所必须解决的关键性问题)

  六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

  七.教学方法要根据学生实际,注重引导自学,注重启发思维

  八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

  九.作业处理(说明如何布置书面或口头作业)

  十.板书设计(说明上课时准备写在黑板上的内容)

  十一.教具(或称教具准备,说明辅助教学手段使用的工具)

  十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

  3.高中数学教案范文

  【教学目标】

  1.知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;

  ②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;

  ②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1、教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2、学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一、创设情境,引入新课

  1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二、观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的'共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三、举一反三,巩固定义

  1、判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四、利用定义,导出通项

  1、已知等差数列:8,5,2,…,求第200项?

  2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五、应用通项,解决问题

  1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

  2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差数列3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六、反馈练习:教材13页练习1

  七、归纳总结:

  1、一个定义:

  等差数列的定义及定义表达式

  2、一个公式:

  等差数列的通项公式

  3、二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  【设计反思】

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高中数学教案3

  教学目标1.进一步理解线性规划的概念;会解简单的线性规划问题;

  2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

  3.进一步提高学生的合作意识和探究意识。

  教学重点:线性规划的概念及其解法

  教学难点

  代数问题几何化的过程

  教学方法:启发探究式

  教学手段运用多媒体技术

  教学过程:1.实际问题引入。

  问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

  2.探究和讨论下列问题。

  (1)实际问题转化为一个怎样的数学问题?

  (2)满足不等式组①的条件的点构成的区域如何表示?

  (3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

  (4)z的几何意义是什么?

  (5)z的最大值如何确定?

  让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的.直线所对应的z最大.

  则zmax=6×70+6×50=720

  结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

  解题反思:

  问题解决过程中体现了那些重要的数学思想?

  3.线性规划的有关概念。

  什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

  4.进一步探究线性规划问题的解。

  问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

  要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

  问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

  5.小结。

  (1)数学知识;(2)数学思想。

  6.作业。

  (1)阅读教材:P.60-63;

  (2)课后练习:教材P.65-2,3;

  (3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

  《一个数列的研究》教学设计

  教学目标:

  1.进一步理解和掌握数列的有关概念和性质;

  2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

  3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

  教学重点:

  问题的提出与解决

  教学难点:

  如何进行问题的探究

  教学方法:

  启发探究式

  教学过程:

  问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

  研究方向提示:

  1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

  2.研究所给数列的项之间的关系;

  3.研究所给数列的子数列;

  4.研究所给数列能构造的新数列;

  5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

  6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

  针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

  课堂小结:

  1.研究一个数列可以从哪些方面提出问题并进行研究?

  2.你最喜欢哪位同学的研究?为什么?

  课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?

  2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?

  开展研究性学习,培养问题解决能力

  一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

  “问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

  问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

  二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

  (一)关于“问题解决”课堂教学模式

  通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

  (二)数学学科中的问题解决能力的培养目标

  数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

  (三)“问题解决”课堂教学模式的教学流程

  (四)“问题解决”课堂教学评价标准

  1. 教学目标的确定;

  2. 教学方法的选择;

  3. 问题的选择;

  4. 师生主体意识的体现;

  5.教学策略的运用。

  (五)了解学生的数学问题解决能力的途径

  (六)开展研究性学习活动对教师的能力要求

高中数学教案4

  1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习

  2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

  4. 你热情大方,为人豪爽,身上透露出女生少有的.霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

  5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

  6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

  7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

  8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

  9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

高中数学教案5

  1.1.1 任意角

  教学目标

  (一) 知识与技能目标

  理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

  (二) 过程与能力目标

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

  (三) 情感与态度目标

  1. 提高学生的推理能力;

  2.培养学生应用意识. 教学重点

  任意角概念的理解;区间角的集合的书写. 教学难点

  终边相同角的集合的表示;区间角的集合的书写.

  教学过程

  一、引入:

  1.回顾角的定义

  ①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

  二、新课:

  1.角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

  ②角的名称:

  ③角的分类: A

  正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

  负角:按顺时针方向旋转形成的角

  ④注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角.

  ⑤练习:请说出角α、β、γ各是多少度?

  2.象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

  例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

  ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

  答:分别为1、2、3、4、1、2象限角.

  3.探究:教材P3面

  终边相同的角的表示:

  所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

  k·360° ,

  k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

  ⑵ α是任一角;

  ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

  360°的整数倍;

  ⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

  例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

  ⑴-120°;

  ⑵640°;

  ⑶-950°12’.

  答:⑴240°,第三象限角;

  ⑵280°,第四象限角;

  ⑶129°48’,第二象限角;

  例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

  例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

  4.课堂小结

  ①角的定义;

  ②角的分类:

  正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

  负角:按顺时针方向旋转形成的角

  ③象限角;

  ④终边相同的角的表示法.

  5.课后作业:

  ①阅读教材P2-P5;

  ②教材P5练习第1-5题;

  ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

  解:??角属于第三象限,

  ? k·360°+180°<α<k·360°+270°(k∈Z)

  因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

  故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

  各是第几象限角?

  <k·180°+135°(k∈Z) .

  <n·360°+135°(n∈Z) ,

  当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

  属于第二象限角

  <n·360°+315°(n∈Z) ,

  当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

  属于第四象限角

  因此

  属于第二或第四象限角.

  1.1.2弧度制

  (一)

  教学目标

  (二) 知识与技能目标

  理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

  (三) 过程与能力目标

  能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

  (四) 情感与态度目标

  通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

  弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点

  “角度制”与“弧度制”的区别与联系.

  教学过程

  一、复习角度制:

  初中所学的角度制是怎样规定角的`度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

  二、新课:

  1.引 入:

  由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

  2.定 义

  我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

  3.思考:

  (1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

  (2)引导学生完成P6的探究并归纳: 弧度制的性质:

  ①半圆所对的圆心角为

  ②整圆所对的圆心角为

  ③正角的弧度数是一个正数.

  ④负角的弧度数是一个负数.

  ⑤零角的弧度数是零.

  ⑥角α的弧度数的绝对值|α|= .

  4.角度与弧度之间的转换:

  ①将角度化为弧度:

  ②将弧度化为角度:

  5.常规写法:

  ① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

  ② 弧度与角度不能混用.

  弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

  例1.把67°30’化成弧度.

  例2.把? rad化成度.

  例3.计算:

  (1)sin4

  (2)tan1.5.

  8.课后作业:

  ①阅读教材P6 –P8;

  ②教材P9练习第1、2、3、6题;

  ③教材P10面7、8题及B2、3题.

高中数学教案6

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的`条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案7

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的`单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案8

  教材分析:

  三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

  教案背景:

  通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

  教学方法:

  以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

  教学目标:

  借助单位圆探究诱导公式。

  能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

  教学重点:

  诱导公式(三)的推导及应用。

  教学难点:

  诱导公式的应用。

  教学手段:

  多媒体。

  教学情景设计:

  一.复习回顾:

  1. 诱导公式(一)(二)。

  2. 角 (终边在一条直线上)

  3. 思考:下列一组角有什么特征?( )能否用式子来表示?

  二.新课:

  已知 由

  可知

  而 (课件演示,学生发现)

  所以

  于是可得: (三)

  设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

  由公式(一)(三)可以看出,角 角 相等。即:

  .

  公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

  设计意图:结合学过的公式(一)(二),发现特点,总结公式。

  1. 练习

  (1)

  设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

  (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

  三.例题

  例3:求下列各三角函数值:

  (1)

  (2)

  (3)

  (4)

  例4:化简

  设计意图:利用公式解决问题。

  练习:

  (1)

  (2) (学生板演,师生点评)

  设计意图:观察公式特点,选择公式解决问题。

  四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

  五.课后作业:课后练习A、B组

  六.课后反思与交流

  很荣幸大家来听我的课,通过这课,我学习到如下的东西:

  1.要认真的研读新课标,对教学的目标,重难点把握要到位

  2.注意板书设计,注重细节的东西,语速需要改正

  3.进一步的'学习网页制作,让你的网页更加的完善,学生更容易操作

  4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

  5.上课的生动化,形象化需要加强

  听课者评价:

  1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

  2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

  3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

  4.评议者:引导学生通过网络进行探究。

  建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

  ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

  ( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

  ( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

  ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

  ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

  ( 6)让学生多探究,课堂会更热闹

  ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

  ( 8)教学模式相对简单重复

  ( 9)思路较为清晰,规范化的推理

高中数学教案9

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的'正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

高中数学教案10

  教学目标:

  1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

  学生全面认识数学的科学价值、应用价值和文化价值。

  2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

  教学重点:

  如何建立实际问题的目标函数是教学的重点与难点。

  教学过程:

  一、问题情境

  问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

  问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

  问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

  二、新课引入

  导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1。几何方面的应用(面积和体积等的最值)。

  2。物理方面的应用(功和功率等最值)。

  3。经济学方面的应用(利润方面最值)。

  三、知识建构

  例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

  说明1解应用题一般有四个要点步骤:设——列——解——答。

  说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

  值及端点值比较即可。

  例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

  能使所用的材料最省?

  变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

  说明1这种在定义域内仅有一个极值的函数称单峰函数。

  说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

  S1列:列出函数关系式。

  S2求:求函数的导数。

  S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

  例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

  多大时,才能使电功率最大?最大电功率是多少?

  说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

  例4强度分别为a,b的两个光源A,B,它们间的.距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

  例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

  (1)设,生产多少单位产品时,边际成本最低?

  (2)设,产品的单价,怎样的定价可使利润最大?

  四、课堂练习

  1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

  2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

  3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

  4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

  五、回顾反思

  (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

  (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

  (3)相当多有关最值的实际问题用导数方法解决较简单。

  六、课外作业

  课本第38页第1,2,3,4题。

高中数学教案11

  一.教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二.目标分析:

  教学重点.难点

  重点:集合的含义与表示方法.

  难点:表示法的恰当选择.

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;

  (4)会用集合语言表示有关数学对象;

  2.过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

  (2)让学生归纳整理本节所学知识.

  3.情感.态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性.

  三.教法分析

  1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

  四.过程分析

  (一)创设情景,揭示课题

  1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

  引导学生互相交流.与此同时,教师对学生的活动给予评价.

  2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1—20以内的所有质数;(2)我国古代的四大发明;

  (3)所有的安理会常任理事国; (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学20xx年9月入学的高一学生的全体.

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

  4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.

  3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

  4.教师提出问题,让学生思考

  b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

  高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的'关系有两种:属于和不属于.

  如果a是集合A的元素,就说a属于集合A,记作a?A.

  如果a不是集合A的元素,就说a不属于集合A,记作a?A.

  (2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

  (3)让学生完成教材第6页练习第1题.

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

  6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题.

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

  (五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:1.课后书面作业:第13页习题1.1A组第4题.

  2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

  五.板书分析

高中数学教案12

  教学目标:

  1.理解流程图的选择结构这种基本逻辑结构.

  2.能识别和理解简单的框图的功能.

  3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.

  教学方法:

  1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

  2. 在具体问题的解决过程中,掌握基本的'流程图的画法和流程图的三种基本逻辑结构.

  教学过程:

  一、问题情境

  1.情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

  其中(单位:)为行李的重量.

  试给出计算费用(单位:元)的一个算法,并画出流程图.

  二、学生活动

  学生讨论,教师引导学生进行表达.

  解 算法为:

  输入行李的重量;

  如果,那么,

  否则;

  输出行李的重量和运费.

  上述算法可以用流程图表示为:

  教师边讲解边画出第10页图1-2-6.

  在上述计费过程中,第二步进行了判断.

  三、建构数学

  1.选择结构的概念:

  先根据条件作出判断,再决定执行哪一种

  操作的结构称为选择结构.

  如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

  2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

  断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

  行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

  两个退出点.

  3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案13

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的'方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

高中数学教案14

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的'增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y'|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f'(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y'|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案15

  1. 该生能以校规班规严格要求自己。有较强的集体荣誉感,学习态度认真,能吃苦,肯下功夫,成绩稳定。生活艰苦朴素,待人热情大方,是个基础扎实,品德兼优的好学生。

  2. 该生能严格遵守学校的规章制度。尊敬师长,团结同学。热爱集体,积极配合其他同学搞好班务工作,劳动积极肯干。学习刻苦认真,勤学好问,学习成绩稳定,学风和工作作风都较为踏实,坚持出满勤,并能积极参加社会实践和文体活动,劳动积极。是一位发展全面的好学生。

  3. 你是同学拥护、老师信任的班委,乖巧懂事、伶俐开朗、自信大方、乐观合群,是同学们学习的榜样。你爱护集体荣誉,有很强的工作能力,总是及时协助老师完成班务工作,是老师的得力帮手。你心性坦荡,个性鲜明,能大胆说出自己的想法,难能可贵。而你在运动场上的爆发力更让老师同学们惊叹!潜力深厚,希望在高中时期能逐渐发掘出来!

  4. 你是个做事小心翼翼,感情细腻丰富的女孩,每次看你认真的样子老师都很感动。你也是幸运的,周边有很多人都在关爱着你,所以,对他们,尤其是父母,记得不要太莽撞,不要太任性,要学着体谅,学着换位思考,学着懂事。另外,今后要多运动、多锻炼,有健康才能成就美好未来!

  5. 你坚强勇敢、乐观大方的性格让老师非常欣赏。学习上始终保持着上进好学的决心和韧性,生活中始终能做到豁达开朗,还有着良好的审美和绘画的专长,令人钦佩!以入世的态度做事,以出世的态度做人,这是我送你的一句话,希望你保持好心态,迎接新的学习生活。

  6. 最有希望得成功者,并不是才干出众的人,而是那些最善于利用时机去努力开创的人。你是很有才华的孩子,老师希望你能把握好机会,求得上进。你聪明,但也有着许多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,坚定目标致力于学习,定能大限度地发挥你的聪明才智!

  7. 该生遵纪守法,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。是一位诚实守信,思想上进,尊敬老师,团结同学,热心助人,积极参加班集体活动,有体育特长,学习认真,具有较好综合素质的优秀学生。

  8. 你聪颖活泼,浑身洋溢青春气息。你爱好广泛,善钻精思,具备一定能力,潜质无限。但是在有些时候,在面临一些问题的时候,你总表现得太过紧张,其实,征服畏惧、建立自信的最快最确实的方法,就是大胆地去做你认为害怕的事,直到你获得成功的经验。继续努力!

  9. 你是对3班这个集体的成长贡献很大的孩子,是老师的得力帮手。你干练沉稳,坚强隐忍,能从大局出发考虑问题,在很多时候能独当一面。你独立能力强,能够吃苦,但在进入高中的学习上却显得有些吃力。其实你还有很深的潜力尚未挖掘,找对方法,好好加油,世上没有绝望的处境,只有对处境绝望的人,请乐观一点,踏实地走好接下来的每一步!

  10. 你是个能独立、有主见的女孩,有自己的想法,有一定的决断力。但是独立不代表乖张,有想法不代表恣意妄为。令人高兴的是,你在这点上做的还是不错的。晟君,老师希望你能一如既往地关注于学习而不懈怠,能坚持怀揣着平和感恩的心态简单快乐地生活。

  11. 你给我的第一印象是有些沉默,其实和朋友在一起时还是很有自己想法的对吧?你看,你布置的新年教室多么出彩!请继续秀出真实而精彩的你!这半个学期的学习有点力不从心,请保持谨慎和细心,保持好的学习习惯,及时弥补所缺漏的环节,大步向前进!

  12. 该生认真遵守学校的规章制度,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。尊敬师长,团结同学。学习态度认真,能吃苦,肯下功夫,成绩稳定上升。是有理想有抱负,基础扎实,心理素质过硬、全面发展的优秀学生。

  13. 你是一个真诚待人、温柔可爱的女生。也许是因为你有些不紧不慢的性格,所以在学习上有时候行动力不够坚决,造成了学习成绩的不稳定。请多利用假期时间好好补缺补漏,向上的姿态才是最重要的!

  14. 老师同学们都在说你是个很有责任心和上进心的孩子,在班级需要的时候,你承担了劳动委员的重任,经常最后一个离开,就为了班级能有个整洁的环境。老师很感谢你!而更可贵的是,你懂得安排自己的时间,在工作的空隙抓紧时间做作业。希望下学期你的学习成绩也能随你的毅力和执着步步攀升,加油,羽腾!

  15. 其实你拥有你自己都不确知的才华,从你的文字中可以读出这样的信息:你时常沉醉在自己的小世界中,做自己喜欢做的事情。老师希望你能敞开心扉,多与旁人交流你快乐的体验和想法,不要吝啬展示自己!还有,成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。请务必抓紧每寸光阴,努力学习!

  16. 你知道吗?在世界上那些最容易的事情中,拖延时间是最不费力的。而学习却是艰辛的劳动过程。表面安静的你其实心里有着自己的想法和烦忧。于是在不经意间,精力被不自觉地转移到一些琐事上,却总无法完全集中心智于学业。也许你也已经意识到,也有了些许进步,那么请千万记住要持之以恒,要付出比别人更多倍的努力!

  17. 你是班级的数学科代表,老师很高兴选择你担任这个职务,不仅能促进自己的进步,而且也展现了你负责工作的一面。但是学习是要和工作一样,需要一丝不苟的态度,包括上课的听讲是否及时而有效,包括功课的完成是否严谨而认真。下学期,愿看到一个更加全神贯注更加专心致志的你!

  18. 我一直难忘在运动会上你担任前导牌的样子,为班级添光增彩了不少!你有着绘画的特长,是个善良、真诚的女孩,有着细腻丰富的内心,也许只需一点鼓励,你便会勇敢走下去,希望能在平时多听见你爽朗的笑声!

  19. 可爱、热情、谨小慎微,这都是你的代名词。你略为腼腆的微笑让人印象深刻。老师一直认为你是能够认真仔细地作好每一件事情、成就每一个细节的,因此,希望你能珍惜时间,提高效率,在学习上狠狠加油!

  20. 其实,任何事都是有重量的,那么,就看你把它变成压力还是重力了。在这个方面,我很高兴地看到你做的很好,你学习自觉,成绩便是努力的证明。老师安排你做物理科代表就是希望能多培养你的责任意识、大局意识和管理能力,希望以后在这方面能看到你更加出色的表现!

  21. 你是个可爱善良,懂事乖巧的女孩。作为语文科代表,兢兢业业,一丝不苟。你对人也是特别真诚热情,偶尔透露出的忧郁是旁人不易察觉的。但是你知道,成长就是破蛹成蝶的过程,高中是人生的重要阶段,勇敢地迈好每一步吧,享受成长带来的所有痛苦和快乐!

  22. 你很有能力,也很潜力,但欠缺的却是耐力和毅力。君子厚积而薄发,希望你能振作精神,跟上进度,迎头赶上,期待你获得更大的进步!

  23. 你曾经和我说过你的理想,但你对理想的憧憬和你所付出的努力程度却总是难成正比。若现在你觉得有障碍挡在前行之路上,那就说明你还没有把目标看的足够清楚。宁在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在临事时无法适从。你现在欠缺的就是对自己发狠奋进的恒心,柏宇,“要想人前显贵,必定人后受罪”,成功要靠实践去争取,而不是光靠几句好听的'决心话!

  24. 你乖巧大方,组织能力一流,但在学习上总显得有些力不从心。快马加鞭迎头赶上固然是必需,但也别太心急,要知道,欲速则不达,只要踏实努力,不懂就问,采用适合自己的学习方法,就会看到进步。也许刚开始的时候进步很小,小到你看不见,但是不要灰心,万事开头难!将事前的忧虑,换为事前的思考和计划,彻底放松,加强锻炼,养足精神再迎战!你能做到的,蔡炜,加油!

  25. 该生能遵守校纪班规,尊敬师长,能与同学和睦相处,勤学好问,有较强的独立钻研能力,分析问题比较深入、全面,在某些问题上有独特的见解,学习成绩在班上一直能保持前茅,乐于助人,能帮助学习有困难的同学。

  26. 不论在体育场还是教室里,看到你神采奕奕的样子,总让人联想到“英姿飒爽”这四个字。这确是一个高中生应该有的精神面貌。你做事认真,顾全大局,真的非常难得。希望能保持这样良好的状态,继续前进!也希望能够多和老师同学交流,多提些对班集体建设的好建议!

  27. 该生能以校规班规严格要求自己,积极参加社会实践和文体活动。尊敬师长,团结同学。集体观念强,劳动积极肯干。积极参加各种集体活动和社会实践活动。学习目的明确,刻苦认真,成绩稳定,是一个有理想、有抱负,基础扎实,心理素质过硬,全面发展的优秀学生。

  28. 我很高兴看到你是个有上进心,有责任感,能够让家人、师长宽慰的孩子。有努力就有回报,你下半学期的表现不就证明了这一点吗?进步是随着时间节节上升的,不要太过急躁,要知道,若你不给自己设限,则人生中就没有限制你发挥的藩篱。新学期要重整旗鼓,再接再励!

  29. ××× 独立性较强,对自己的能力也有准确的定位。建议今后学习上要养成勤思爱问的习惯,不能做井底之蛙,满足于现状,要充分利用他人的智慧,最后达到“好风凭借力,送我上青云”的目的。

  30. ××× 每天在教室,都能看到你埋头苦读的身影,可见读书的态度很端正;而你每一次考试的成绩虽然不拔尖,却是在稳步前进,可见读书的效率还不错。请继续保持这种虚心求学、稳步前进的态势,相信一年半以后的高考,你必将崭露头角,脱颖而出。

【高中数学教案】相关文章:

高中数学教案04-11

高中数学教案模板02-02

高中数学教案(精选15篇)02-04

高中数学教案(精选20篇)01-29

高中数学教案精选15篇01-29

高中数学教案(15篇)07-21

高中数学教案通用15篇01-11

高中数学教案(集锦15篇)12-30

高中数学教案(汇编15篇)01-22