精选可能性教案合集六篇
作为一名默默奉献的教育工作者,时常需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?下面是小编为大家收集的可能性教案6篇,希望能够帮助到大家。
可能性教案 篇1
学习目标:
1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;
3.培养简单推理的能力,增强学习数学的兴趣。
教学重点:
用分数表示可能性的大小,理解分数表示可能性的实际意义。
教学难点:
灵活运用可能性的有关知识,解释并设计游戏活动。
教具准备:
多媒体课件
学习方法:
动手操作、实验法、观察思考
教学过程:
一、复习可能性的含义以及可能性的大小
1.出示下列四个图形:(投影出示)
2.提出问题:从( )号口袋中摸出的.一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。
追问:从上面哪两个口袋中摸球的结果是确定的,哪两个口袋中摸球的结果是不确定的?(确定 不确定)
小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
揭题:今天我们就来一起复习可能性。(板书:可能性)
3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的可能性更大一些呢?
提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?
从③号口袋中摸到红球的可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。
二、指导练习。
1.做第1题。(投影出示)
指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?
先让学生各自连一连,再指名说说思考过程。(多媒体演示)
2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。
(1)任意摸1个球,下面几种情况是不可能发生,还是一定发生或可能发生?
可能性教案 篇2
学生在前几册教材中初步学习了收集、记录、分类整理信息以及用简单的表格或涂颜色的方块表示统计的结果,还在摸彩球、玩转盘、抛圆片等活动中初步体会了有些事情的发生是确定的,有些是不确定的,并能用可能不可能一定等词语描述生活中一些事件发生的可能性。本单元继续教学可能性,让学生体会事件中各种情况发生的可能性有时是相等的、有时是不相等的,学会用经常偶尔机会是相等的等词语来描述生活中一些事情发生的可能性。在教学可能性的时候,教材充分利用学生已有的统计知识,进一步提高统计能力。把可能性的教学与统计方法密切结合是本单元教材编写的一大亮点。
1、第90~91页教学等可能性,即事件发生的过程中各种情况出现的机会是相等的。
例题让学生玩摸球游戏,口袋里装了红球和黄球,这两种颜色球的个数相等,让学生在摸球活动中体验摸到红球的机会与摸到黄球的机会是相等的。例题首先明确游戏方法每次摸1个球,摸出以后把球放回口袋,一共摸40次。然后明确记录方法把每次摸到的颜色用画正字的方法记录在《摸球结果记录表》里,摸了40次以后,分别统计摸到红球、黄球的`次数,填入《摸球结果统计表》里。例题还通过四个问题引导学生进行数学思考:任意摸1个球,可能是什么颜色估计一下,摸的40次里红球和黄球可能各摸到多少次统计的结果和你的估计差不多吗你发现了什么
为了保证游戏结果的客观性,教学时要注意六点。
(1) 每次任意摸1个球。学生应该在看不到球的颜色的情境中随意摸;把摸出的球放回口袋后,要用力把口袋抖动几次,使不同颜色的球在口袋里随意分布。
(2) 摸的次数要多。因为摸的次数越多,摸到两种颜色的次数越可能接近。如果摸的次数太少,就不容易显示出可能性是相等的。例题要求摸40次,教学时只能多于40次,不能少。
(3) 估计红球和黄球可能各摸到多少次时,要让学生在口袋里的红球和黄球个数相同的现实情境下,联系经验思考,不但要估计两种颜色的球可能各摸到的次数,而且说说为什么作出这样的估计。
(4) 要指导学生记录。每次摸得什么颜色的球要随时记录,游戏结束后才能统计。学生以前用画的方法记录,现在用画正的方法记录,应该对学生讲讲画正字的方法,并让他们体会这种记录的好处。
(5) 要组织学生交流。每组学生摸的40次里,一般不会两种颜色的球各20次,会一种颜色的次数稍多一些,另一种颜色的次数稍少一些,个案不容易反映出可能性相等。只有在各组的交流中,在对众多个案的观察分析中,学生才能从两种颜色的次数差不多,体会机会是相等的。
(6) 要组织学生反思。让学生想一想、说一说,为什么摸到的红球和黄球的次数差不多,并找到原因口袋里装的红球与黄球的个数是相等的。
2、第92~93页教学事件发生的过程中,有些情况出现的机会多,有些情况出现的机会少,即可能性有大、有小。
例题仍然让学生玩摸球游戏。口袋里装了3个黄球和1个红球,两种颜色球的个数不等。每次任意摸1个球,及时记录球的颜色,摸了10次以后统计哪种颜色的球摸到的次数多一些。游戏方法和数学思考与等可能性的例题基本相同,数学思考的线索仍然是现实情境猜想实验验证猜想分析原因。记录信息采用统计图,教材提供了两种统计图,左边一种是前几册中用过的方块图,右边一种把方格连成了条形,学生可以任选一种记录。通过这里两种记录的图,引导学生从认识的方块图过渡到认识条形图。
游戏后组织学生交流要抓住三点。
(1) 从结果想原因,体会可能性有大、有小。各组摸球的结果都是摸到黄球的次数多,摸到红球的次数少。要让学生想想、说说为什么。
(2) 把两种统计图进行比较。围绕右边的统计图是怎样画的、表示什么意思,两种统计图有什么相同、有什么不同等问题让学生讨论,实现从方块图到条形图的过渡。
(3) 把可能性相等与可能性不相等作比较。两道例题都是摸球,为什么前一道例题摸到黄球的次数与红球差不多,后一道例题摸到黄球的次数比红球多得多,让学生自己找到原因。
3、两道例题的后面各有一次想想做做,都是两道题,两道题的思维方向虽然不同,但都能帮助学生加强对可能性的体验。
其中第1题通过抛小正方体继续体会例题教学的可能性相等与可能性有大有小。第2题运用对可能性的认识先按照预设的结果在布袋里放铅笔,再通过摸铅笔活动验证有没有达到预期的要求,从而进一步理解可能性相等和可能性有大有小。
练习九第1~3题分别联系天气情况、玩转盘以及生活中的事情引导学生用经常偶尔 可能性相等等词语形象地描述可能性的大小。
4、第96~97页实践活动让学生在摸牌和下棋游戏中继续体会可能性相等与可能性有大有小。
摸牌游戏,从四种花色的牌摸到的次数差不多,到红桃花色的牌摸得的次数比其他花色的牌明显多,能使学生感受由于条件变化会引起可能性的变化。
下棋游戏的规则比较复杂。正方体上涂红色的面比涂黑色的面的个数多,红色面朝上在棋盘上走的格子比黑色面朝上走的格子少,最后结果是拿红棋的人经常获胜。分析原因,学生能从中获得很多感受,对可能性的大小有更多体会。
可能性教案 篇3
本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
1.体验事件发生的确定性和不确定性。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。
教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的
(1)主题图的教学。
教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。
需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。
(2)例1的教学。
教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。
教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。
①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。
②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。
③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教
科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的`问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。
④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。
⑤(3)例2的教学。
⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。
⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。
⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。
⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。
为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。
一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。
由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。
可能性教案 篇4
教学目标:
1、体验事件发生的可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、根据可能性事件与游戏规则的公平性关系能设计合理的游戏规则,解决实际问题。
3、创设问题情境,激发学生学习的热情和兴趣。
教学重难点:
重点: 理解掌握可能性的意义,用分数表示等可能性
难点: 能设计合理的游戏规则,解决实际问题。
教学准备:白球、黄球、硬币
教学过程:
一、创设情境,导入课题
1、今天老师跟大家一起玩个比赛好吗? 这里有三个盒子,盒子里都装有了6个球,老师想跟同学比赛,看谁能摸得到白球,比比谁的`运气好(老师盒子里装6个白球,学生的一个装6个黄球,另一个盒子里装了3个黄球和3个白球)
师生比赛。
思考:你能猜出老师运气好的奥秘吗?
估计回答:
1、老师的盒子装的全是白球,所以一定摸到是白球。
2、一个盒子里装除了白球还有其他颜色的球,所以摸到的可能是白球。
3、还有一个盒子没有装白球,所以不可能摸到白球。
板书: 可能 一定 不可能
在日常生活中,有的事物可能发生,有的事物不可能发生。今天我们来研究有关可能性的问题。
板书: 可能性
二、探究新知
1、同学们最喜欢课外活动,你们看参加课外活动的小朋友可多了。
引导学生看课本图
老师让我们红队先开球吧!还是让我们黄队先开球吧!…
谁先开球呢?同学们你们有没有公平的办法。
学生汇报
1、石头 剪子 布
2、转转盘
3、抛硬币
介绍:国际足球比赛一般采用抛硬币办法决定谁开球,你们认为抛硬币的方法公平吗?为什么?
我们来做抛硬币实验来验证。
2、活动体验,感受过程
抛硬币游戏
游戏规则:
1、竖着把硬币放在20厘米左右的高处让硬币自由落在桌面,每组抛20次。
2,用“正”法在草稿纸上做好记录。
3,抛完后,小组长统计本组的情况并填好记录表,组内同学共同校对。
4,活动时我们要互相合作,有秩序,保持安静。
四、巩固拓展
放学以后,你喜欢做什么?(看动画片)你喜欢看什么动画片?
1、(出示课件:小明喜欢看动画片《电击小子》小丽喜欢看《羊羊快乐的一年》,但只有一台电视机,该怎么办)
生:他们可以抽扑克牌解决
生:可以用“石头、剪子、布”来解决
生:可以掷骰子来解决
……
师:你们的方法很好,我们再来看小明和小丽的办法好吗?
(课件:掷一枚正方体决定谁看动画片。小正方体共有6个面,每个面上标有数字1,2,3,4,5,6。如果朝上的数字是6,则小明看,如果朝上的数字不是6,则小丽看。)
生:老师,这样不公平 。
生:是呀是呀,小丽要耍赖了。
生:我给他们改游戏规则吧!改为如果朝上的数字是1,2,3则小丽去,如果朝上的数字是4,5,6则小明去。
生:这个办法对他们来说是公平的 。都是3/6=1/2
师:你想的办法也很公平。
小军不看动画片,他喜欢下飞行棋,你玩过飞行棋吗?怎样玩的?掷一个正方体骰子,朝上的面数字是几,就走几步。正方体的6个面上分别写着1,2,3,4,5,6,掷出每个数字可能性一样吗?
生:可能性都是1/6 师:如果我们把这个正方体改成长方体,掷出的可能性一样吗?为什么?
师:长方体的六个面不一样大,所以每个面朝上的可能性不相等。
五、全课总结
今天我们在游戏中知道了一件不确定的事情它的可能性可以用一个数表示,例如,掷硬币掷出正面和反面的可能性都是1/2,掷一个正方体的骰子,每个面掷出的可能性都一样。
可能性教案 篇5
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册P104页“可能性”。
二、教学准备
教具准备:一个装着黄球的盒子,一个贴着红、绿贴纸的骰子,若干投影片投影仪。
学具准备:六个装有红、黄、白三种颜色小球的盒子,六个骰子,若干红、绿贴纸,水彩笔若干。
全班分6个学习小组,每组6人。
三、教学目标与策略选择
1、目标确定:
“可能性”是新教材的内容,学生在生活中或多或少也接触过,但作为数学中的概率知识来学习还是第一次,对他们而言还是有一定难度的,根据教材内容和学生实际情况,我重组教材,制定了以下几个教学目标。
⑴知识目标、;通过具体的操作活动,学生能初步体验事件发生的确定性和不确定性。经历猜测和简单的试验初步了解可能性的大小。能用“一定”“可能”“不可能”等词语来描述生活中一些事情发生的可能性。
⑵技能目标:结合具体情境,能对某些事件进行推理,概括其结果。对一些简单事件的可能性进行描述,并和同伴交流想法。
⑶情感目标:在游戏中学习数学,感受数学学习带来的快乐,并获得一些初步的数学实践活动经验;在和伙伴交流的过程中获得良好的情感体验。
⑷教材的重点难点:有关概率知识对学生而言还是一个全新的概念,设计各种活动丰富学生的感性经验升华为理性认识尤为重要,所以我把体验、描述生活中的确定和不确定事件为教学重点。通过实验领悟可能性大小与其可能出现的不同结果所占总数数量多少的密切关系为本节课的难点。
2、教学策略选择:
根据学生的心里特征和教材实际,本节课选择了演示、观察、操作、启发、和情境性等教学策略,改变以往的学习方式,采用小组合作、探究学习,自主学习、重视体验等多种学习策略,力求培养学生的猜想意识,表达能力以及初步的判断和推理能力,激发学习数学的兴趣和养成良好的合作学习态度。整堂课把学习的主动权交给学生,放手让学生通过操作实践、自主探索、合作交流等有效学习方式,推出可能性的几种情况与“可能性”是有大小的。学生学的积极主动,老师教得轻松自然。整个教学过程教师的作用从传统的传递知识的权威变成学生学习的辅导者,成为学生学习的高效伙伴或合作者。学生在“猜球”、“摸球”、“涂色”、“小小裁判”、“选词填空”、“设计骰子”等充满情趣的情境中玩数学、学数学,亲身体验知识的形成过程,体会到运用知识解决实际问题的乐趣。
四、教学流程及设计意图
教学流程
设计意图
一、引入
小朋友们,我想知道你们喜欢做游戏吗?好,这节课我们大家就一起来做游戏。老师带来了几种不同颜色的球,悄悄装在盒子里。每小组的同学轮流来摸球,猜猜看你摸到的会是什么颜色的球?
二、展开
(一)认识“可能”、“一定”、“不可能”
1、初步感知(猜球)
学生们轮流摸球,前几个小朋友摸了以后,下面开始有“黄球”、“红球”、“白球”的叫声。
师:谁愿意说一说你们摸球的情况?
学生各抒己见
师:“大家说得很好那谁能把这些情况用一句话既清楚又简单地表达出来呢?”
引导学生说:在摸球的时候有可能摸到白球,有可能摸到黄球,也有可能摸到红球,摸到球的颜色不能肯定。
小结:象这样当答案不确定的时候,我们可以用“可能”这个词来表达。(板书)
师:如果继续摸的话,你会摸到什么颜色的球?用黑板上这个词来说一句话。
2、再次感知(摸球)
师:看大家玩得那么开心,我也想玩,老师这也有一个盒子,里面装的也是小球,看看能摸出什么颜色的球。
教师第一个摸出是黄球。接着走到学生中,学生参与摸球。
随着每个学生摸出的都是黄球,学生喊“黄球”的声音越来越大。
轮到最后一个学生摸球了,老师问:“你们能不能马上说出他摸的球的颜色?”
如果学生猜测是黄球,说说为什么?(学生猜测里面全是黄球)
师:一定吗?
【备选】当学生回答不一定时,打开盒子验证一下。
小结:当我们知道结果只有一种情况时,可以用“一定”这个词来表示。(板书一定)
如果在这个装着黄球的盒子里摸出一个白球,你认为可能吗?
根据学生回答板书(不可能)
(二)、初步了解可能性的大小
1、有什么办法在这个盒子里可能摸到白球呢?
2、放几个可以容易摸到?
根据学生回答师生共同进行验证。小组合作,把数量比例不同的黄球、白球放到盒子里进行实验,验证结论对错。
3、如果要求盒子里摸出的一定是白球该怎么办?
4、概括
通过刚才的摸球游戏,你们发现了什么?
让学生各抒己见
师:一般事情都有“一定可能不可能三种情况”,当然,可能性是有大有小的,有时候可能性也会发生变化。
5、揭题(板书课题――“可能性”)
(三)生活中的“可能性”
1、小小裁判(出示书P105插图)
生活中的很多事情都具有可能性,你看,这里有几件和生活紧密联系的事情,请你运用“一定”、“可能”、“不可能”对这几件事进行判断。同意说法的打√,不同意的打×。
⑴地球每天都在转动。
⑵我从出生到现在没吃过一点东西。
⑶三天后下雨。
⑷世界上每天都有孩子出生。
⑸太阳从西边升起。
⑹吃饭时,人用左手拿筷子。
(实物投影出示插图)学生进行判断。有争议的让学生说说为什么。
2、选词填空
同学们在语文课上我们都做过选词填空。今天数学课也要来做选词填空,看谁填得又对又快。
人()会老。明天的数学测试小明()得满分。
冬天()会下雪。在除法中,余数()比除数小。
鱼离开水()会死。在地球上,石狮子()在天上飞。
三、巩固
1、涂一涂
你看,这里有三个盒子。盒子里分别装着不同形状的物体,可是他们都忘了穿衣服,要同学们根据要求给他们涂上颜色,穿上衣服。
根据要求涂
⑴○一定是黄色的
⑵☆可能是蓝色的
⑶△不可能是红色的
2、造句
把今天学到的知识与实际生活联系起来,找个实例,选择“一定”、“可能”、“不可能”造一个句子。
师示范:星期三过后一定是星期四。
让学生说给自己的同桌听,小组交流。
“太阳不可能从西边升起。”
“地震可能会发生。”
“其它星球上可能有外星人。”
“人一定会死的。”
“三十岁的爸爸妈妈不可能变成一岁的小宝宝。”
四、拓展
设计骰子
师:前几天老师到温州乐园玩,参加一个玩骰子的游戏,规则是骰子上面有两种颜色,甩到红色的一面就可以得到一个奖品。你们想玩吗?
1、师出示一个一面是红色,其余五面都是绿色的骰子和学生一起游戏,在游戏的过程中体会到得奖可能性大小和骰子颜色设计有关。
2、动手设计骰子,根据学生希望中奖率的高低来设计骰子。
3、学生反馈,展示自己的作品。
五、总结
这节课大家玩得开心吗?让你觉得最成功的`是什么?
设计猜球游戏的情境引入,既直接又富有情趣,还贴近学生的生活实际。
第一次小组合作“猜球”游戏让学生在良好的学习氛围里初步感知“可能性”。第二次师生互动“摸球”游戏,再次让学生在愉悦中真切的感受到:有些事件的发生是确定的,有些事件的发生是不确定的,因而产生对事件发生的可能性的初步认识。自然而然理解“一定”、“可能”、“不可能”
这三个数学用语。
先进行大胆猜想,再进行实验验证。
实验是一个重要的数学思想方法。通过实验,让学生根据结果验证猜想结论对错,领悟“可能性”大小与其可能出现的不同结果所占总数数量多少有密切关系,既丰富了感性经验,又有了实际依据。也突破了教学的难点。
通过判断和选词填空,使学生了解身边的一些现象,进一步体验生活中确定和不确定的事件,体会概率知识和生活的密切关系。同时规范学生的数学语言。
让学生找生活中的实例,体会生活中处处有数学,进一步提高学生的口头表达能力。在这一环节中要注意培养学生相互倾听、汲取经验和相互交流的能力。
第一个层次巩固了新知,第二个层次“设计骰子”不仅激发了学生的创造欲望,让学生学以致用、大显身手,而且发散了学生的思维,使他们在在获得成功的喜悦中学会深入地思考问题、解决问题。
可能性教案 篇6
复习内容:教科书第12册112页-115页整理与反思和练习与实践。
教学目标:
1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。
教学过程
一、复习有关统计的知识和方法。
1、引导学生回忆收集和整理数据的方法。
①广泛地有针对性地收集各种原始数据。
②对数据进行加工,去粗取精,去伪存真。
③数据处理、分类和计算。
④ 按一定的顺序或方式表示出来。
提问:收集数据有哪些方法?(小组讨论,集体交流)
小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。
2、提问:记录数据有哪些方法?举例说明。
(如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)
3、出示填空题。
( )统计图能清楚地表示出数量的增减变化情况
( )统计图可以清楚地表示出各部分同总数的关系。
( )统计图能清楚地直接比较出数量的多少。
小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的特点,我们要根据数据特点进行选择。
4、指导学生完成第1题
⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)
⑵思考:这两组数据分别制成什么统计图比较合适?为什么?
⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。
⑷提出一些问题让学生看图回答。
二、回忆不同统计图的特点。
(一)出示教材113页的统计图指导观察统计图
1、指名回答,这是什么统计图?
2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?
(①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的`直条不是并着排列的,而时是首尾相接。)
3、独立完成统计表
根据图中的信息将统计表填写完整。
4、小组交流讨论教材中提出的4个问题
引导学生可以根据统计图或统计表进行回答出示条形统计图
(二)指导完成第3题
1、出示第3题统计表,说说从表中可以了解哪些信息?
2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)
3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)
4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。
5、在讨论中完成对两个问题的解答。
(三)指导完成第4题
1、讨论扇形统计图的有关特征?
2、独立完成书上3个问题的解答,然后集体校对
课前思考:
考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。
在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。
教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。
第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的学生总人数,然后再计算。
讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
课前思考:
本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。
课后反思:
指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
【可能性教案】相关文章:
《可能性》教案01-31
可能性教案06-21
可能性教案范文04-13
《统计与可能性》教案04-06
可能性教案(15篇)01-31
可能性教案15篇01-31
《可能性》教案15篇02-13
《可能性》教案(15篇)02-13
可能性教案(精选15篇)02-18
精选可能性教案五篇03-28