实用的二次根式教案4篇
在教学工作者开展教学活动前,总归要编写教案,借助教案可以有效提升自己的教学能力。那么什么样的教案才是好的呢?以下是小编帮大家整理的二次根式教案4篇,欢迎阅读,希望大家能够喜欢。
二次根式教案 篇1
教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的.算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结
本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
五、布置作业
下列各式化成最简二次根式:
二次根式教案 篇2
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根.
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.
(2)-3x0,x0,即x0时, 是二次根式.
(3) ,且x0,x0,当x0时, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.
例4 下列各式是二次根式,求式子中的.字母所满足的条件:
(1) ; (2) ; (3) ; (4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.
2.式子中,被开方数(式)必须大于等于零.
(四)练习和作业
练习:
1.判断下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.
2.a是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材P.172习题11.1;A组1;B组1.
六、板书设计
二次根式教案 篇3
一、内容和内容解析
1.内容
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1.教学目标
(1)体会研究二次根式是实际的需要.
(2)了解二次根式的概念.
2. 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.
(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
【设计意图】为概括二次根式的概念作铺垫.
2.抽象概括,形成概念
问题3 你能用一个式子表示一个非负数的.算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.
3.辨析概念,应用巩固
例1 当 时怎样的实数时, 在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.
例2 当 是怎样的实数时, 在实数范围内有意义? 呢?
师生活动:先让学生独立思考,再追问.
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.
问题4 你能比较 与0的大小吗?
师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.
4.综合运用,巩固提高
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.
5.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结.
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.
6.布置作业:
教科书习题16.1第1,3,5, 7,10题.
五、目标检测设计
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.
2. 当 时,二次根式 无意义.
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.
3.当 时,二次根式 有最小值,其最小值是 .
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.
4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.
二次根式教案 篇4
一、教学目标
1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。
2。使学生掌握化简一个二次根式成最简二次根式的方法。
3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。
二、教学重点和难点
1。重点:能够把所给的二次根式,化成最简二次根式。
2。难点:正确运用化一个二次根式成为最简二次根式的方法。
三、教学方法
通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。
四、教学手段
利用投影仪。
五、教学过程
(一)引入新课
提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?
了。这样会给解决实际问题带来方便。
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。
总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:
1。被开方数的因数是整数,因式是整式。
2。被开方数中不含能开得尽方的.因数或因式。
例1 指出下列根式中的最简二次根式,并说明为什么。
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。
例2 把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。
例3 把下列各式化简成最简二次根式:
说明:
1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。
2。要提问学生
问题,通过这个小题使学生明确如何使用化简中的条件。
通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。
注意:
①化简时,一般需要把被开方数分解因数或分解因式。
②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。
(三)小结
1。满足什么条件的根式是最简二次根式。
2。把一个二次根式化成最简二次根式的主要方法。
(四)练习
1。指出下列各式中的最简二次根式:
2。把下列各式化成最简二次根式:
六、作业
教材P。187习题11。4;A组1;B组1。
七、板书设计
【二次根式教案】相关文章:
二次根式教案02-15
《二次根式的运算》的教案08-25
二次根式的加减教案01-19
二次根式教案4篇02-05
精选二次根式教案三篇08-18
二次根式教案7篇01-24
二次根式数学教案11-26
二次根式教案(15篇)02-27
二次根式教案15篇02-16
二次根式教案汇总五篇04-03