初中数学教案

时间:2022-12-29 18:31:35 教案 投诉 投稿

初中数学教案15篇

  作为一名教师,时常会需要准备好教案,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!下面是小编精心整理的初中数学教案,欢迎阅读与收藏。

初中数学教案15篇

初中数学教案1

  教学目标:

  1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

  2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

  3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

  教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

  教 具: 多媒体、棉线、三角板

  教学过程:

  情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

  如何来描述我们所看到的现象?

  教学过程:

  1、 一段拉直的棉线可近似地看作线段

  师生画线段

  演示投影片1:①将线段向一个方向无限延长,就形成了______

  学生画射线

  ②将线段向两个方向无限延长就形成了_______

  学生画直线

  2、 讨论小组交流:

  ① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

  (强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

  ②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

  (鼓励学生用自己的语言描述它们各自的特点)

  3、 问题1:图中有几条线段?哪几条?

  “要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

  点的记法: 用一个大写英文字母

  线段的记法:①用两个端点的字母来表示

  ②用一个小写英文字母表示

  自己想办法表示射线,让学生充分讨论,并比较如何表示合理

  射线的记法:

  用端点及射线上一点来表示,注意端点的字母写在前面

  直线的记法:

  ① 用直线上两个点来表示

  ② 用一个小写字母来表示

  强调大写字母与小写字母来表示它们时的区别

  (我们知道他们是无限延长的,我们为了方便研究约定成俗的.用上面的方法来表示它们。)

  练习1:读句画图(如图示)

  (1) 连BC、AD

  (2) 画射线AD

  (3) 画直线AB、CD相交于E

  (4) 延长线段BC,反向延长线段DA相交与F

  (5) 连结AC、BD相交于O

  练习2:右图中,有哪几条线段、射线、直线

  4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

  学生通过画图,得出结论:过一点可以画无数条直线

  经过两点有且只有一条直线

  问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

  为什么?(学生通过操作,回答)

  小组讨论交流:

  你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

  适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

  5、 小结:

  ① 学生回忆今天这节课学过的内容

  进一步清晰线段、射线、直线的概念

  ② 强调线段、射线、直线表示方法的掌握

  6、 作业:①阅读“读一读” P121

  ②习题4的1、2、3。4作为思考题

初中数学教案2

  这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从以下几个方面来就本节课的教学进行解说。

  一、教材分析

  教材所处的地位及作用:

  本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

  二、学情分析

  1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

  2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

  三、教学目标

  1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;

  2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

  3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;

  4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

  四、重点、难点

  1、重点:锐角正弦的定义及应用;

  2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

  3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

  五、教法及学法

  本节课采用情境引导和探究发现教学法,通过适宜的`问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  六、教学过程

  为了实现本节的教学目标,教学过程分为以下六个环节:

  (一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

  (四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

  下面就几个主要环节进行解说

  (一)复习旧知,情境引入

  (二)先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

  (二)合作探究,获得新知:

  先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

  当∠A的度数一定时,∠A的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A的对边和斜边的比值是关于∠A度数的函数。

  再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

  (三)巩固训练

  讲解一道求正弦值的例题。

  (四)强化提高,培养能力

  出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

  (五)小结归纳,拓展深化

初中数学教案3

  学习目标:

  1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系

  2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、

  3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力

  学习重难点:

  重点:矩形的性质定理

  难点:灵活应用矩形的`性质进行有关的计算与证明

  课前准备

  教具准备:活动平行四边形框架、教师准备PPT课件

  教学过程:

  知识回顾

  1、什么叫平行四边形?

  2、平行四边形有哪些性质?

  【设计意图】:

  通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫

  合作探究一:矩形的定义

  阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?

  用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?

  【设计意图】:

  通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维

  归纳:有一个角是直角的平行四边形叫做矩形、

  合作探究二:矩形的性质定理

  1、自主完成18页的观察与思考,通过实际操作回答提出的问题

  2、小组合作:完成对性质的证明过程

  【设计意图】:

  通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础

  矩形的性质定理1:矩形的四个角都是直角

  矩形的性质定理2:矩形的两条对角线相等

  合作探究三:直角三角形的性质定理3

  设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段

  (BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?

  【设计意图】:

  根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的必要性

  结论:直角三角形斜边上的中线等于斜边的一半

  例题讲解:

  例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?

  当堂检测:

  1、矩形具有而平行四边形不具有的性质()

  (A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线

  (1)若BD=3㎝,则AC=㎝

  (2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长

  4、工人师傅做铝合金窗框分下面三个步骤进行:

  (1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;

  (2)摆放成如图(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;

  (3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是____,根据的数学道理是________________。

  课堂小结:

  请说出你本节课的收获,与大家一块分享!!

  作业:

  课本P、20第2题

  板书设计:

  xxx

初中数学教案4

  一、教材的地位与作用

  《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

  二、教学目标

  (一)知识与技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  (二)数学思考:

  体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

  (三)问题解决:

  初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

  (四)情感态度:

  培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

  三、教学重点与难点

  教学重点:二元一次方程及其解的概念。

  教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  四、教法与学法分析

  教法:情境教学法、比较教学法、阅读教学法。

  学法:阅读、比较、探究的学习方式。

  五、教学过程

  1.创设情境,引入新课

  从学生熟悉的姚明受伤事件引入。

  师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

  (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

  (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

  设姚明投进了x个两分球,罚进了y个球,可列出方程。

  (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

  设易建联投进了x个两分球,y个三分球,可列出方程。

  师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

  从而揭示课题。

  (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)

  2.探索交流,汲取新知

  概念思辨,归纳二元一次方程的特征

  师:那到底什么叫二元一次方程?(学生思考后回答)

  师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

  师:根据概念,你觉得二元一次方程应具备哪几个特征?

  活动:你自己构造一个二元一次方程。

  快速判断:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

  二元一次方程解的概念

  师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

  师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

  使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的'值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

  二元一次方程解的不唯一性

  对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

  (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)当x=2时,求所对应的y的值;

  (2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

  (3)用含x的代数式表示y;

  (4)用含y的代数式表示x;

  (5)当x=负2,0时,所对应的y的值是多少?

  (6)写出方程3x+2y=10的三个解.

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

  大显身手:

  课内练习第2题

  梳理知识,课堂升华

  本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

  必做题:书本作业题1、2、3、4。

  选做题:书本作业题5、6。

  设计说明

  本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

  在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

  此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

初中数学教案5

  教学目标:

  1.会用待定系数法求反比例函数的解析式.

  2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.

  3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.

  重点:用待定系数法求反比例函数的解析式.

  难点:例3要用科学知识,又要用不等式的知识,学生不易理解.

  教学过程:

  一.复习

  1、反比例函数的定义:

  判断下列说法是否正确(对‖√‖,错‖3‖)

  (1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数.(2)圆的面积公式s??r2中,s与r成正比例.(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数.方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数.(4)一个正四棱柱的底面正

  定时,商和除数成反比例.(5)当被除数(不为零)一

  (6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数.

  2、思考:如何确定反比例函数的解析式?

  (1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______

  (2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x

  二.新课

  1.例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x

  3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?

  3.说一说它们的求法:

  (1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式.

  (2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的.函数解析式.

  4.例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。

  (1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。

  (2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?

  在例3的教学中可作如下启发:

  (1)电流、电阻、电压之间有何关系?

  (2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?

  (3)前灯的亮度取决于哪个变量的大小?如何决定?

  先让学生尝试练习,后师生一起点评。

  三.巩固练习:

  1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围。

  (2)求V=9m3时,二氧化碳的密度。

  四.拓展:

  1.已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:

  (1)Y关于x的函数解析式;

  (2)当z=-1时,x,y的值.

  2.已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的

  值都等于10,求y与x之间的函数关系。

  五.交流反思

  求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?

  六、布置作业:P4B组

  教学后记:

  U由欧姆定律得到。R

初中数学教案6

  教学建议

  知识结构

  重难点分析

  本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

  1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

  4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

  6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

  一、教学目标

  1.掌握概念,知道与平行四边形的关系.

  2.掌握的性质.

  3.通过运用知识解决具体问题,提高分析能力和观察能力.

  4.通过教具的演示培养学生的学习兴趣.

  5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

  6.通过性质的学习,体会的图形美.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点·难点·疑点及解决办法

  1.教学重点:的性质定理.

  2.教学难点:把的性质和直角三角形的知识综合应用.

  3.疑点:与矩形的性质的区别.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  【复习提问】

  1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

  2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

  3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

  【引入新课】

  我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

  【讲解新课】

  1.定义:有一组邻边相等的平行四边形叫做.

  讲解这个定义时,要抓住概念的本质,应突出两条:

  (1)强调是平行四边形.

  (2)一组邻边相等.

  2.的性质:

  教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

  下面研究的性质:

  师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

  生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

  性质定理1:的四条边都相等.

  由的四条边都相等,根据平行四边形对角线互相平分,可以得到

  性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

  引导学生完成定理的`规范证明.

  师:观察右图,被对角线分成的四个直角三角形有什么关系?

  生:全等.

  师:它们的底和高和两条对角线有什么关系?

  生:分别是两条对角线的一半.

  师:如果设的两条对角线分别为、,则的面积是什么?

  生:

  教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

  例2已知:如右图,是△的角平分线,交于,交于.

  求证:四边形是.

  (引导学生用定义来判定.)

  例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

  (1)按教材的方法求面积.

  (2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

  【总结、扩展】

  1.小结:(打出投影)(图4)

  (1)、平行四边形、四边形的从属关系:

  (2)性质:图5

  ①具有平行四边形的所有性质.

  ②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

  八、布置作业

  教材P158中6、7、8,P196中10

  九、板书设计

  标题

  定义……

  性质例2…… 小结:

  性质定理1:……例3…… ……

  性质定理2:……

  十、随堂练习

  教材P151中1、2、3

  补充

  1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

  2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教案7

  【教学目标】

  1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。

  2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。

  3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。

  【教学重点与教学难点】

  1、重点:多边形的内角和公式。

  2、难点:多边形内角和的推导。

  3、关键:。多边形"分割"为三角形。

  【教具准备】

  三角板、卡纸

  【教学过程】

  一、创设情景,揭示问题

  1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

  2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

  你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

  二、探索研究学会新知

  1、回顾旧知,引出问题:

  (1)三角形的内角和等于_________。外角和等于____________

  (2)长方形的内角和等于_____,正方形的内角和等于__________。

  2、探索四边形的内角和:

  (1)学生思考,同学讨论交流。

  (2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的`内角和作为探索多边形的。突破口。

  (3)引导学生用"分割法"探索四边形的内角和:

  方法一:连接一条对角线,分成2个三角形:

  180°+180°=360°

  从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。

  180°×4-360°=360°

  3、探索多边形内角和的问题,提出阶梯式的问题:

  你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

  你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

  n边形3456.。.n分成三角形的个数1234.。.n—2内角和。.。.

  4、及时运用,掌握新知:

  (1)一个八边形的内角和是_____________度

  (2)一个多边形的内角和是720度,这个多边形是_____边形

  (3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

  通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。

  三、点例透析

  运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

  四、应用训练强化理解

  4、第83页练习1和2多边形内角和定理的应用

  五、知识回放

  课堂小结提问方式:本节课我们学习了什么?

  1、多边形内角和公式。

  2、多边形内角和计算是通过转化为三角形。

  六、作业练习

  1、书面作业:

  2、课外练习:

初中数学教案8

  把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  一、教材内容分析

  本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。

  二、教学目标:

  1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则

  2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。

  3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。

  三、学情分析

  针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

  四、教学重点:利用移项解一元一次方程。

  五、教学难点:移项法则的探究过程。

  六、教学过程:

  (一)情景引入

  引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )

  A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨

  设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项

  (二)出示学习目标

  1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。

  2.会建立方程解决简单的实际问题。

  设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。

  (三)导教导学

  1.出示自学指导

  自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的.格式正确解答问题)

  2.学生自学

  学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。

  3.交流展示(小组合作展示)

  (合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。

  2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)

  3)根据等量关系列方程: 3x+20 = 4x-25(板书)

  【总结提升】解决“分配问题”应用题的列方程的基本要点:

  A.找出能贯穿应用题始终的一个不变的量.

  B.用两个不同的式子去表示这个量.

  C.由表示这个不变的量的两个式子相等列出方程.

  设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。

  (变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数

  (只设列即可)

  (变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?

  设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。

  (合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。

  (板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。

  《解一元一次方程——移项》教学设计(魏玉英)

  师:为什么等式(方程)可以这样变形?依据什么?

  (出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.

  师:解一元一次方程中“移项”起了什么作用?

  (出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)

  (基础训练)抢答:判断下列移项是否正确,如有错误,请修改

  《解一元一次方程——移项》教学设计(魏玉英)

  设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。

  【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1

  (综合训练) 解下列方程(任选两题)

  设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。

  (中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为

  设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。

  (四)我总结、我提高:

  通过本节课的学习我收获了。

  设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。

  (五)当堂检测(50分)

  1.下列方程变形正确的是( )

  A.由-2x=6, 得x=3

  B.由-3=x+2, 得x=-3-2

  C.由-7x+3=x-3, 得(-7+1)x=-3-3

  D.由5x=2x+3, 得x=-1

  2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)

  3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。

  (师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。

  (六)实践活动

  请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。

  设计意图:

  让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。

初中数学教案9

  教学目标

  1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学重点和难点

  重点和难点:正确地求出代数式的值

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1庇么数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%

  2庇糜镅孕鹗龃数式2n+10的意义

  3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的'基础上,教师打投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容

  二、师生共同研究代数式的值的意义

  1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

  2苯岷仙鲜隼题,提出如下几个问题:

  (1)求代数式2x+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

  例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70

  注意:如果代数式中省略乘号,代入后需添上乘号

  例2根据下面a,b的值,求代数式a2-的值

  (1)a=4,b=12,(2)a=1,b=1

  解:(1)当a=4,b=12时,

  a2-=42-=16-3=13;

  (2)当a=1,b=1时,

  a2-=-=

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

  三、课堂练习

  1(1)当x=2时,求代数式x2-1的值;

  (2)当x=,y=时,求代数式x(x-y)的值

  2钡盿=,b=时,求下列代数式的值:

  (1)(a+b)2;(2)(a-b)2

  3钡眡=5,y=3时,求代数式的值

  答案:1.(1)3;(2);2.(1);(2);3..

  四、师生共同小结

  首先,请学生回答下面问题:

  1北窘诳窝习了哪些内容?

  2鼻蟠数式的值应分哪几步?

  3痹“代入”这一步应注意什么”

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

  五、作业

  当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);

  今天的内容就介绍到这里了。

初中数学教案10

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

  二、目标和目标解析

  (一)教学目标

  1.理解不等式的概念

  2.理解不等式的解与解集的意义,理解它们的区别与联系

  3.了解解不等式的概念

  4.用数轴来表示简单不等式的解集

  (二)目标解析

  1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

  2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

  3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

  因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

  五、教学过程设计

  (一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

  (二)立足实际引出新知

  问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  1.从时间方面虑:

  2.从行程方面:<>50 3.从速度方面考虑:x>50÷

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的`能力.

  (三)紧扣问题概念辨析

  1.不等式

  设问1:什么是不等式?

  设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

  2.不等式的解

  设问1:什么是不等式的解?设问

  2:不等式的解是唯一的吗?由学生自学再讨论.

  老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

  3.不等式的解集

  设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问

  2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

  老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

  4.解不等式

  设问1:什么是解不等式?由学生回答.

  老师强调:解不等式是一个过程.

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题

  2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

  (五)归纳小结,反思

  提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?

  <的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题.

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

  六、目标检测设计1.填空

  下列式子中属于不等式的有___________________________

  ①x +7>

  ②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

  2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数

  ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教案11

  教学目标

  1.使学生正确理解的意义,掌握的三要素;

  2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

  难点:正确理解有理数与上点的对应关系.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的.都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

  进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例 变式练习

  例1 画一个,并在上画出表示下列各数的点:

  例2 指出上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案12

  教学目标

  1.使学生了解命题、真命题和假命题等概念.

  2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式

  重点和难点

  分清命题的题设和结论,既是教学的重点又是教学的难点.

  教学过程

  一、引入

  请大家随意说出一些语句,教师把它们写在黑板上.如:

  (1)对顶角相等吗?

  (2)作一条线段AB=2cm;

  (3)我爱初二(1)班;

  (4)两直线平行,同位角相等;

  (5)相等的两个角,一定是对顶角.

  二、新课

  问:上述语句中,哪些是判断一件事情的句子?

  答:(3)、(4)、(5)是判断一件事情的句子.

  教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).

  例1请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?

  (1)等角的补角相等;

  (2)有理数一定是自然数;

  (3)内错角相等两直线平行;

  (4)如果a是有理数,那么a2>a;

  (5)每一个大于4的偶数都可以表示成两个质数之和(即著名的.哥德巴赫猜想).

  教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.

  练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.

  例2在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?

  (l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.

  (2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。

  (3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.

  (4)“如果a是有理数,那么a 2>a.”是不正确的命题,反例如a=1,a 2 =a.

  (5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“ 1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.

  教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.

  真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.

  假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!

  怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.

  例3试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.

  (1)对顶角相等;

  (2)两直线平行,同位角相等;

  (3)若a=0,则ab=0;

  (4)两条直线不平行,则一定相交;

  (5)凡相等的角都是直角.

  解:

  (l)对顶角相等(真);

  相等的角是对顶角(假);

  不是对顶角不相等(假);

  不相等的角不是对顶角(真).

  (2)两直线平行,同位角相等(真);

  同位角相等,两直线平行(真);

  两直线不平行,同位角不相等(真);

  同位角不相等,两直线不平行(真).

  (3)若a=0,则ab=0(真);

  若ab=0,则a=0(假);

  若a≠0,则ab≠0(假);

  若ab≠0,则a≠0(真).

  (4)两条直线不平行,则一定相交(假);

  两条直线相交,则一定不平行(真);

  两条直线平行,则一定不相交(真);

  两条直线不相交,则一定平行(假).

  (注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.

  (5)凡相等的角都是直角(假);

  凡直角都相等(真);

  凡不相等的角不都是直角(真);

  凡不都是直角的角不相等(假).

  说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.

  小结:

  命题---判断一件事情的句子;

  命题的结构---;如果(题设)……,那么(结论)……;

  命题的真假---正确或错误的判断;

  四种命题---原、逆、否、逆否.

  (用投影片显示或挂小黑板)

  三、作业

  1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.

  (l)如果AB⊥CD于O,那么∠AOC=90°;

  (2)取线段AB的中点C;

  (3)两条直线相交,有且只有一个交点;

  (4)一个平角的度数是180°;

  (5)若a=b,则a 2 =b 2;

  (6)如果一个数的末位数字是0,那么它一定能够被5整除;

  (7)同角的余角相等;

  (8)周角的一半等于直角.

  2.选作题

  判断命题“如果n是自然数,那么n 2 +n+17是质数”的真假.

初中数学教案13

  教学目标:

  利用数形结合的数学思想分析问题解决问题。

  利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

  在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

  教学重点和难点:

  运用数形结合的思想方法进行解二次函数,这是重点也是难点。

  教学过程:

  (一)引入:

  分组复习旧知。

  探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

  可引导学生从几个方面进行讨论:

  (1)如何画图

  (2)顶点、图象与坐标轴的交点

  (3)所形成的三角形以及四边形的面积

  (4)对称轴

  从上面的问题导入今天的课题二次函数中的图象与性质。

  (二)新授:

  1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

  再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

  再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

  2、让同学讨论:从已知条件如何求二次函数的解析式。

  例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

  (三)提高练习

  根据我们学校人人皆知的船模特色项目设计了这样一个情境:

  让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

  让学生在练习中体会二次函数的图象与性质在解题中的作用。

  (四)让学生讨论小结(略)

  (五)作业布置

  1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

  (1)求二次函数的解析式;

  (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的.面积。

  2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

  3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

  (1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

  (2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

初中数学教案14

  [教学目标]

  1、体会并了解反比例函数的图象的意义

  2、能列表、描点、连线法画出反比例函数的图象

  3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质

  [教学重点和难点]

  本节教学的重点是反比例函数的图象及图象的性质

  由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点

  [教学过程]

  1、情境创设

  可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

  2、探索活动

  探索活动1反比例函数y?

  由于反比例函数y?

  要分几个层次来探求:

  (1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

  (2)方法与步骤——利用描点作图;

  列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

  描点:依据什么(数据、方法)找点?

  连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

  探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的.难度,因此需x2的图象.x

  可以引导学生采用多种方式进行自主探索活动:

  2的图象的方式与步骤进行自主探索其图象;x

  222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx

  22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?

  引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?

  k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x

初中数学教案15

  教学目标

  1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

  2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。

  3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

  教学重点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  知识难点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  教学准备

  量角器、三角尺。

  教学过程

  (师生活动)设计理念

  复习

  任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。

  探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。

  让学生回忆学过的描述方法,师生共同探讨解决问题的`办法。

  不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

  方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。

【初中数学教案】相关文章:

初中数学教案范文08-24

小班数学教案:种花_小班数学教案07-06

《左右》数学教案12-17

小学数学教案02-24

小班数学教案:好玩的糖_小班数学教案07-06

中班数学教案:有趣的数字_中班数学教案07-07

大班数学教案:有趣的动物叫声_大班数学教案07-06

大班数学教案:管子变形的秘密_大班数学教案07-13

认识颜色数学教案09-06

《自然测量》数学教案12-08