- 《一元二次方程》的优秀教案 推荐度:
- 《用公式法解一元二次方程》教案 推荐度:
- 一元二次方程教案 推荐度:
- 相关推荐
一元二次方程教案
作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。我们应该怎么写教案呢?下面是小编精心整理的一元二次方程教案,希望对大家有所帮助。
一元二次方程教案1
一、复习目标:
1、能说出一元二次方程及其相关概念,;
2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。
3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
二、复习重难点:
重点:一元二次方程的解法和应用.
难点:应用一元二次方程解决实际问题的方法.
三、知识回顾:
1、一元二次方程的定义:
2、一元二次方程的常用解法有:
配方法的一般过程是怎样的?
3、一元二次方程在生活中有哪些应用?请举例说明。
4、利用方程解决实际问题的关键是。
在解决实际问题的过程中,怎样判断求得的.结果是否合理?请举例说明。
四、例题解析:
例1、填空
1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.
3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0时,应将方程变形为()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
学习内容学习随记
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(选择适当的方法解)
例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?
2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
一元二次方程教案2
一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的'左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10.
学生练习:书本P4练习
(四)总结反思 拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.
(五)布置作业
(1)必做题P4 习题1.1A组 1.2
(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。
一元二次方程教案3
教学目标
知识与技能目标
1、构建本章的部分知识框图。
2、复习一元二次方程的概念、解法。
过程与方法
1、通过对本章方程解法的复习,进一步提高学生的运算能力。
2、在解一元二次方程的过程中体会转化等数学思想。
情感、态度与价值观
通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.
教学重点
1、一元二次方程的.概念
2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;
教学难点
解法的灵活选择;例4和例5的解法。
教学过程
一、创设情境
导入新课
问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)
二、师生互动
共同探究
1、复习概念
例1
例2
2、四种解法
(1)
解法及其关系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四种解法分别解此方程
(4)方法优选
3、方法补充
例4
4、解法纠错
例5
解关于x的方程
错误解法
正确解法
三、小结反思
提炼思想
我们有哪些收获?解方程的思想方法是什么?
四、布置作业
巩固提高
一元二次方程教案4
一、复习引入
导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?
二、探究新知
1.课本思考
分析:将(x-x1)(x-x2)=0化为一般形式x2-(x1+x2)x+x1x2=0与x2+px+q=0对比,易知p=-(x1+x2),q=x1x2.即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.
2.跟踪练习
求下列方程的两根x1、x2.的和与积.
x2+3x+2=0;x2+2x-3=0;x2-6x+5=0;x2-6x-15=0
3.方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?
分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?
4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a如何教育如何教育不一定是1,它的两根的和、积与系数之间有第3题中的.关系吗?
分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.
5.跟踪练习
求下列方程的两根x1、x2.的和与积.
13x2+7x+2=0;3x2+7x-2=0;3x2-7x+2=0;3x2-7x-2=0;
25x-1=4x2;5x2-1=4x2+x
6.拓展练习
1已知一元二次方程2x2+bx+c=0的两个根是-1,3,则b=,c=.
2已知关于x的方程x2+kx-2=0的一个根是1,则另一个根是,k的值是.
3若关于x的一元二次方程x2+px+q=0的两个根互为相反数,则p=若两个根互为倒数,则q=.
分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数?
一元二次方程教案5
教学目标:
知识与技能目标:
经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
过程与方法目标:
经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。
情感态度与价值观目标:
培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。
教学重点:
理解一元二次方程的概念及其形式。
教学难点:
一元二次方程概念的探索
教学过程
一、情境引入
今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)
二、探索新知
列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)
请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)
观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。
请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。
2、以上方程与一元一次方程有什么相同与不同之处?
3、你能说说什么样的方程是一元二次方程吗?
4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?
5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?
6、你认为一元二次方程的概念中重点要强调的是什么?为什么?
请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?
请你抢答问题7。
7、判断下列方程是不是一元二次方程,若不是请说明理由。
同桌两人能举出几个一元二次方程的例子吗?
探索二
先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。
找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。
三、巩固练习
请看问题2,
2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?
四、课堂:
先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。
五、自我检测:
看看我们的收获是不是真的
硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改
1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?
根据题意,列出方程为------------------------------------。
2.把下列方程化为一元二次方程的形式,并写出它的`二次项系数、常数项:
方程
一般形式
二次项系数
常数项
3x2=5x-1
(x+2)(x-1)=6
3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k为何值时,是一元二次方程?k--------------是一元二次方程。
(2)k为何值时,是一元一次方程?k-------------是一元一次方程。
六、小组
请小组长本小组今天大家的表现。
七、作业
课本42页1(2),2(1)(2)(3)
能力挑战:
已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?
板书设计:一元二次方程
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一个未知数(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)
二次项一次项常数项
二次项系数一次项系数常数项系数
参加区优质课评比反思:
这次有幸参加我区优质课评比,感受颇多。
一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。
二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。
三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。
一元二次方程教案6
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
例1 下列方程中两实数根之和为2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
错答: B
正解:C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
错解 :B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2)2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范
围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2。25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3±,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的.实数根x1、x2。(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k<时,方程有两个不相等的实数根。
(2)存在。如果方程的两实数根x1、x2互为相反数,则x1+ x2=-=0,
解得k=。经检验k=是方程-的解。
∴当k=时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。
(2)k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=->0 ;
x1。 x2=->0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
课题:一元二次方程实数根错例剖析课
精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
例1 下列方程中两实数根之和为2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
错答: B
正解:C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
错解 :B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2)2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范
围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2。25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3±,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k<时,方程有两个不相等的实数根。
(2)存在。如果方程的两实数根x1、x2互为相反数,则x1+ x2=-=0,
解得k=。经检验k=是方程-的解。
∴当k=时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。
(2)k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=->0 ;
x1。 x2=->0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
一元二次方程教案7
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的判别式。
(2)用根的判别式解决实际问题。
7、教学难点:
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导——发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的.过程。
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业本上。
2、有余力的同学把练习题整理在作业本。
四、教学后记
一元二次方程教案8
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的`面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得: (x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1= =0.8m,x2=-2(舍)
∴上口宽为2.8m,渠底为1.2m.
(2) =25天
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.
例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
一元二次方程教案9
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的`一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
一元二次方程教案10
教学目标
(一)教学知识点
1.能够利用二次函数的图象求一元二次方程的近似根.
2.进一步发展估算能力.
(二)能力训练要求
1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.
2.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.
(三)情感与价值观要求
通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力.
教学重点
1.经历探索二次函数与一元二次方程的关系的'过程,体会方程与函数之间的联系.
2.能够利用二次函数的图象求一元二次方程的近似根.
教学难点
利用二次函数的图象求一元二次方程的近似根.
教学方法
学生合作交流学习法.
教具准备
投影片三张
第一张:(记作2.8.2A)
第二张:(记作2.8.2B)
第三张:(记作2.8.2C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.
一元二次方程教案11
教学目标
掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:
二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:
一、情境创设
一次函数y=x+2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
二、探索活动
活动一观察
在直角坐标系中任意取三点A、B、C,测出它们的`纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的坐标为A(,),B(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函数y=mx2+x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
四、拓展练习
1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
(1)请写出方程ax2+bx+c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
五、小结
这节课我们有哪些收获?
六、作业
求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。
一元二次方程教案12
教学内容:
本节内容是:
人教版义务教育课程标准实验教科书数学九年级上册
第22章第2节第1课时。
一、教学目标
(一)知识目标
1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标
1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观
通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点
配方法解一元二次方程的一般步骤
三、教学难点
具体用配方法的一般步骤解一元二次方程。
四、知识考点
运用配方法解一元二次方程。
五、教学过程
(一)复习引入
1、复习:
解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:
二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究
通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注
意力,引发学生思考。
问题1:
一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,
具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2
列出方程:60x2=1500
x2=25
x=±5
因为x为棱长不能为负值,所以x=5
即:正方体的`棱长为5dm。
1、用直接开平方法解一元二次方程
(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:
要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?
问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。
具体解题步骤:
解:设场地宽x m,长(x +6)m。
列方程: x(x +6)=16
即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9
(1)有实根(2)有两正根(3)一正一负
变式题:m为何实数值时,关于x的方程x2?mx?(3?m)?0有两个大于1的根.
例2. 若8x4+8(a-2)x2-a+5>0对于任意实数x均成立,求实数a的取值范围.
例3.关于x的方程ax?2x?1?0至少有一个负根,求实数m的取值范围。
课堂小练习:
【布置作业】
省略
一元二次方程教案13
试讲人:XXX
知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法
重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法
教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!
1、自我介绍:30s
大家下午好!我叫XXX,20xx年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)
需要变换的:2x +4x-8=0
步骤:将二次项系数化为1,左右同除2得:x +2x-4=0
将常数项移到等号右边得:x +2x=4
左右同时加上一次项系数一半的平方得:x +2x+1=4+1
所以有方程为:(x+1)=5 形似 x=n
然后用直接开平方解得x+1=±5 x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!
题目:1/2x-5x-1=0 答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b ±2-4ac )/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:
3x -2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
化简得:x1=(1-)/3 x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的`第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab 可以化成ab (1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0 这样就可以解出x=-a/m x=-b/n
我们一起做一个例题巩固一下:4x +5x+1=0
则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
一元二次方程教案14
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的`四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演
效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
一元二次方程教案15
教学目标:(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
教学重点:一元二次方程的概念、一元二次方程的一般形式
教学难点:因式分解法解一元二次方程
教学过程:
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
练习
2:一元二次方程的.一般形式(形如aX+bX+c=0)
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
练习
(三)小结
(四)布置作业
板书设计
教学目标:(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
教学重点:一元二次方程的概念、一元二次方程的一般形式
教学难点:因式分解法解一元二次方程
教学过程:
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
练习
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
练习
(三)小结
(四)布置作业
板书设计
【一元二次方程教案】相关文章:
一元二次方程的解法教案12-30
一元二次方程教案15篇01-15
《用公式法解一元二次方程》教案03-29
《一元二次方程》教学反思03-30
一元二次方程教学反思04-04
《用一元二次方程解决问题》教案08-31
解一元二次方程教学反思04-01
一元二次方程的解法教学反思05-31
《一元二次方程》整章的教后反思04-08