八年级数学教案

时间:2023-01-31 12:21:26 教案 投诉 投稿
  • 八年级数学教案 推荐度:
  • 相关推荐

八年级数学教案(15篇)

  作为一名教职工,通常会被要求编写教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?下面是小编精心整理的八年级数学教案,欢迎阅读,希望大家能够喜欢。

八年级数学教案(15篇)

八年级数学教案1

  一、内容和内容解析

  1.内容

  三角形中相关元素的概念、按边分类及三角形的三边关系.

  2.内容解析

  三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

  本节课的教学重点:三角形中的相关概念和三角形三边关系.

  本节课的教学难点:三角形的三边关系.

  二、目标和目标解析

  1.教学目标

  (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

  (2)理解并且灵活应用三角形三边关系.

  2.教学目标解析

  (1)结合具体图形,识三角形的概念及其基本元素.

  (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

  (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

  三、教学问题诊断分析

  在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

  四、教学过程设计

  1.创设情境,提出问题

  问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

  师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

  【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

  2.抽象概括,形成概念

  动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

  师生活动:

  三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的`图形叫做三角形.

  【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.

  补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

  师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

  【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

  3.概念辨析,应用巩固

  如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

  1.以AB为一边的三角形有哪些?

  2.以∠D为一个内角的三角形有哪些?

  3.以E为一个顶点的三角形有哪些?

  4.说出ΔBCD的三个角.

  师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

  4.拓广延伸,探究分类

  我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

  师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

八年级数学教案2

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的'通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案3

  一.教学目标:

  1.了解方差的定义和计算公式。

  2.理解方差概念的产生和形成的过程。

  3.会用方差计算公式来比较两组数据的波动大小。

  二.重点、难点和难点的突破方法:

  1.重点:方差产生的必要性和应用方差公式解决实际问题。

  2.难点:理解方差公式

  3.难点的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

  (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

  (2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

  (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

  三.例习题的意图分析:

  1.教材P125的讨论问题的意图:

  (1).创设问题情境,引起学生的学习兴趣和好奇心。

  (2).为引入方差概念和方差计算公式作铺垫。

  (3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

  (4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

  2.教材P154例1的设计意图:

  (1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

  (2).例1的.解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

  四.课堂引入:

  除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

  五.例题的分析:

  教材P154例1在分析过程中应抓住以下几点:

  1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

  2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

  3.方差怎样去体现波动大小?

  这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

  六.随堂练习:

  1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  问:(1)哪种农作物的苗长的比较高?

  (2)哪种农作物的苗长得比较整齐?

  2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

  测试次数1 2 3 4 5

  段巍13 14 13 12 13

  金志强10 13 16 14 12

  参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

  2.段巍的成绩比金志强的成绩要稳定。

  七.课后练习:

  1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

  3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

  4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  选择小兵参加比赛。

八年级数学教案4

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

  根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

  通过近些年的'中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

  通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

  (二)重点、难点

  一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  (三)教学目标

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

八年级数学教案5

  教学目标:

  1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

  2、能力目标:

  ①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

  ②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

  3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

  重点与难点:

  重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

  难点:综合利用各种变换关系观察图形的形成。

  疑点:基本图案不同,形成方式不同。

  教学方法:

  新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

  教学过程设计:

  1、情境导入

  播放自制图形形成的影片,如图351。

  2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

  问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

  (1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

  (2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

  (3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

  (4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

  (学生可能还有其他不同描述,教师应予以肯定)

  3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

  4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

  学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

  5、例1、怎样将图353中的甲图变成乙图案?

  通过相对简单活泼的问题,让学生能运用图形变换的.几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

  例2、怎样将图354中右边的图案变成左边的图案?

  留给学生充足的时间讨论交流。

  (师):哪位同学有好好方法,请告诉大家!

  (生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。

  (生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。

  明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

  5、学习小结

  (1)内容总结

  两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

  (2)方法归纳

  ①了解并知道图案变化的一般方法。

  ②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

  6、目标检测

  图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

  延伸拓展:

  1、链接生活

  链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

  链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

  实践探索:

  ①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

  ②巩固练习课本74页中的习题3.6。

  板书设计:

  3.5它们是怎样变过来的。

  轴对称、平移、旋转的性质例题;

  图形之间的变换关系;

八年级数学教案6

  【教学目标】

  1、了解分式概念。

  2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件。

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学过程】

  一、课堂导入

  1、让学生填写[思考],学生自己依次填出:,,,。

  2、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的流速为x千米/时。

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=。

  3、以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。分数的分子A与分母B都是整数,而这些式子中的.A、B都是整式,并且B中都含有字母。

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  二、例题讲解

  例1:当x为何值时,分式有意义。

  【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3)。

  【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。

  三、随堂练习

  1、判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2、当x取何值时,下列分式有意义?

  3、当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获。

  五、布置作业

  课本128~129页练习。

八年级数学教案7

  教学目标:

  1、知道负整数指数幂=(a≠0,n是正整数)。

  2、掌握整数指数幂的运算性质。

  3、会用科学计数法表示小于1的数。

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题。

  教学过程:

  一、课堂引入

  1、回忆正整数指数幂的运算性质:

  (1)同底数的幂的'乘法:am?an = am+n (m,n是正整数);

  (2)幂的乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2、回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3、你还记得1纳米=10?9米,即1纳米=米吗?

  4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立。 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的。

  三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案8

  教学目标

  (一)教学知识点

  1、等腰三角形的概念、

  2、等腰三角形的性质、

  3、等腰三角形的概念及性质的应用、

  1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

  2、探索并掌握等腰三角形的性质、

  (三)情感与价值观要求

  通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

  教学重点

  1、等腰三角形的概念及性质、

  2、等腰三角形性质的应用、

  教学难点

  等腰三角形三线合一的性质的理解及其应用、

  教学方法

  探究归纳法、

  教具准备

  师:多媒体课件、投影仪;

  生:硬纸、剪刀、

  教学过程

  1、提出问题,创设情境

  (师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  (生)有的三角形是轴对称图形,有的三角形不是。

  (师)那什么样的三角形是轴对称图形?

  (生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  (师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  2、导入新课

  (师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  (生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

  (师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

  (师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  (师)有了上述概念,同学们来想一想。

  (演示课件)

  1、等腰三角形是轴对称图形吗?请找出它的对称轴。

  2、等腰三角形的两底角有什么关系?

  3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  (生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  (师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的'两个底角有什么关系。

  (生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

  (生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

  (生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

  (生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

  (师)你们说的是同一条直线吗?大家来动手折叠、观察。

  (生齐声)它们是同一条直线。

  (师)很好、现在同学们来归纳等腰三角形的性质。。

  (生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  (师)很好,大家看屏幕。

  (演示课件)

  等腰三角形的性质:

  1、等腰三角形的两个底角相等(简写成“等边对等角”)

  2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

  (师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

  (投影仪演示学生证明过程)

  (生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为

  所以BAD≌CAD(SSS)、

  所以∠B=∠C、

  (生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以BAD≌CAD、

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

  (师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

  (演示课件)

  (例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

  (师)同学们先思考一下,我们再来分析这个题、

  (生)根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

  (师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

  (课件演示)

  (例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、

  设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、

  于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

  在ABC中,∠A=35°,∠ABC=∠C=72°、

  (师)下面我们通过练习来巩固这节课所学的知识、

  3、随堂练习

  (一)课本P141练习1、2、3。

  练习

  1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

  答案:(1)72°(2)30°

  2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

  答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

  3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、

  答:∠B=77°,∠C=38、5°、

  (二)阅读课本P138~P140,然后小结、

  4、课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

  5、课后作业

  (一)课本P147─1、3、4、8题、

  (二)1、预习课本P141~P143、

  2、预习提纲:等腰三角形的判定、

  6、活动与探究

  如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、

  求证:AE=CE、

  过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

  结果:

  证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

  ADP≌ADC、

  ∠P=∠ACD、

  又DE∥AP,

  ∠4=∠P、

  ∠4=∠ACD、

  DE=EC、

  同理可证:AE=DE、

  AE=CE、

  板书设计

八年级数学教案9

  【教学目标】

  一、教学知识点

  1.命题的组成。

  2.命题真假的判断。

  二、能力训练要求:

  1.使学生能够分清命题的条件和结论,能判断命题的真假

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

  三、情感与价值观要求:

  1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

  2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

  3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

  【教学重点】准确的找出命题的条件和结论

  【教学难点】理解判断一个真命题需要证明

  【教学方】探讨、合作交流

  【教具准备】投影片

  【教学过程】

  一、情景创设、引入新课

  师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

  新课:

  (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

  1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

  2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

  4.如果一个四边形的对角线相等,那么这个四边形是矩形。

  5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

  师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

  二、例题讲解:

  例1:师:下列命题的条件是什么?结论是什么?

  1.如果两个角相等,那么他们是对顶角;

  2.如果a>b,b>c,那么a=c;

  3.两角和其中一角的对边对应相等的两个三角形全等;

  4.菱形的四条边都相等;

  5.全等三角形的面积相等。

  例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

  2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

  例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

  师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

  教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

  三、思维拓展:

  拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

  教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

  (1)首先给学生介绍欧几里得的《原本》

  (2)引出概念:公理、定理,证明

  (3)启发学生,现在如何证实一个命题的正确性

  (4)给出本套教材所选用如下6个命题作为公理

  (5)等式性质、不等式有关性质,等量代换也看作定理。

  拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

  建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

  练习书p197习题6.31

  四、问题式总结

  师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

  建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

  作业:书p197习题6.32、3

  板书设计:

  定义与命题

  课时2

  条件

  1.命题的结构特征

  结论

  1.假命题——可以举反例

  2.命题真假的判别

  2.真命题——需要证明 学生活动一——

  探索命题的结构特征

  学生观察、分组讨论,得出结论:

  (1)这五个命题都是用“如果……那么……”形式叙述的

  (2)这五个命题都是由已知得到结论

  (3)这五个命题都有条件和结论

  学生活动二——

  探索命题的.条件和结论

  生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

  学生活动三

  探索命题的真假——如何判断假命题

  生:可以举一个例子,说明命题1是不正确的,如图:

  已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

  生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

  生:由此说明:命题1、2是不正确的

  生:命题3、4、5是正确的

  学生活动四

  探索命题的真假——如何证实一个命题是真命题

  学生交流:

  生:用我们以前学过的观察、实验、验证特例等方法

  生:这些方法往往并不可靠

  生:能够根据已知道的真命题证实呢?

  生:那已经知道的真命题又是如何证实的?

  生:那可怎么办呢?

  生:可通过证明的方法

  学生分小组讨论得出结论

  生:命题的结构特征:条件和结论

  生:命题有真假之分

  生:可以通过举反例的方法判断假命题

  生:可通过证明的方法证实真命题

八年级数学教案10

  一、课堂导入

  回顾平行四边的性质定理及定义

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  二、新课讲解

  平行四边形的判定:

  (定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  (平行四边形判定定理):

  (一)两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,BC=DA。

  求证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

  板书证明过程。

  小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

  (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

  活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的.端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

  设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

八年级数学教案11

  一、学习目标:

  让学生了解多项式公因式的意义,初步会用提公因式法分解因式

  二、重点难点

  重点:能观察出多项式的公因式,并根据分配律把公因式提出来

  难点:让学生识别多项式的公因式.

  三、合作学习:

  公因式与提公因式法分解因式的概念.

  三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的.方法叫做提公因式法。

  四、精讲精练

  例1、将下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

  首先找各项系数的____________________,如8和12的公约数是4.

  其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的

  课堂练习

  1.写出下列多项式各项的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小结:

  总结出找公因式的一般步骤.:

  首先找各项系数的大公约数,

  其次找各项中含有的相同的字母,相同字母的指数取次数最小的

  注意:(a-b)2=(b-a)2

  六、作业

  1、教科书习题

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

八年级数学教案12

  一、素质教育目标

  (一)知识教学点

  1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

  2.使学生理解判定定理与性质定理的区别与联系.

  3.会根据简单的条件画出平行四边形,并说明画图的'依据是哪几个定理.

  (二)能力训练点

  1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

  2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

  (三)德育渗透点

  通过一题多解激发学生的学习兴趣.

  (四)美育渗透点

  通过学习,体会几何证明的方法美.

  二、学法引导

  构造逆命题,分析探索证明,启发讲解.

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形的判定定理1、2、3的应用.

  2.教学难点:综合应用判定定理和性质定理.

  3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

  (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

八年级数学教案13

  创设情境

  1、什么叫平行四边形?平行四边形有什么性质?

  2、将以上的性质定理,分别用命题形式叙述出来。

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  探究归纳

  平行四边形的判定方法:

  证明:两组对边分别相等的四边形是平行四边形

  已知:

  求证:

  做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?

  学生交流:把你做的四边形和其他同学做的.进行比较,看看是否都是平行四边形。

  观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

  练习:如图,在ABCD中,E,F,G和H分别是各边中点。求证:四边形EFGH为平行四边形

八年级数学教案14

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯.

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的.仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1) 讲解例1。学生分析完成,教师注重完成后的点评。

  例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1= 只要证什么?

  (3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

  (2)讲解例2(投影例2 )

  例2已知:如图AB=DC,AD=BC

  求证:∠A=∠C

  (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

  (2)找学生代表口述证明思路。

  思路1:连接BD(如图)

  证△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  例3如图,已知AB=AC,DB=DC

  (1)若E、F、G、H分别是各边的中点,求证:EH=FG

  (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上写出证明,然后选择投影显示。

  证明:(略)

  说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

  例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

  求证:AC=2AE.

  证明:(略)

  学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

  5、课堂小结:

  (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

  在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业:

  a、书面作业P70#11、12

  b、上交作业P70#14 P71B组3

八年级数学教案15

  第三十四学时:14.2.1平方差公式

  一、学习目标:

  1.经历探索平方差公式的过程。

  2.会推导平方差公式,并能运用公式进行简单的运算。

  二、重点难点

  重点:平方差公式的`推导和应用;

  难点:理解平方差公式的结构特征,灵活应用平方差公式。

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)20xx×1999(2)998×1002

  导入新课:计算下列多项式的积.

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

  (4)(x+5y)(x—5y)。

  结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x—2);

  (2)(b+2a)(2a—b);

  (3)(—x+2y)(—x—2y)。

  例2:计算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  随堂练习

  计算:

  (1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

  (4)(a5—b2)(a5+b2);

  (5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小结

  (a+b)(a—b)=a2—b2

【八年级数学教案】相关文章:

实数数学教案03-19

认识时钟数学教案03-19

认识球体数学教案03-19

《有余数的除法》数学教案03-23

《学习6、7的加法》数学教案03-21

《笔算乘法》数学教案(通用10篇)06-16

幼儿园大班数学教案05-26

大班《认识几何体》数学教案03-21

大班《一寸虫》数学教案04-14

《有理数的混合运算》数学教案03-19