平行四边形面积教案14篇
作为一名为他人授业解惑的教育工作者,时常需要编写教案,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?以下是小编为大家收集的平行四边形面积教案,希望能够帮助到大家。
平行四边形面积教案 篇1
教学内容:
人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:
通过转化的方法理解平行四边形的面积计算公式、
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的.计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
平行四边形面积教案 篇2
教材分析
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
教学过程
教学环节
教学活动
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】平行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1) 你把平行四边形转化成什么图形?
(2) 什么变了,什么没变?
(3) 平行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)
【追问】要求平行四边形的面积,必须知道什么?
(一)基本技能训练
(1) 计算平行四边形的.面积
(2) 蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24平方厘米的平行四边形
2.如果这个平行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
平行四边形面积教案 篇3
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的'菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
平行四边形面积教案 篇4
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的`面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形面积教案 篇5
教学目标:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。
3、培养学生的小组合作意识,发展学生的空间观念。
教学重难点:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教具准备:
教学课件、平行四边形教具和学具、剪刀等。
教学过程:
一、情境引入
师:这节课老师将和大家一起学习一个新知识,同学们有信心吗?
师:看到同学们精神饱满的样子,老师也有信心。让我们一起努力吧!
师:首先老师想考考大家,知道的同学请举手。
t1:你们认识哪些平面图形?
t2:你们认识老师手中的图形吗?
t3:(出示课件2)请同学们观察学校门前的两个花坛,它们分别是什么形状?
t4:哪个花坛面积大?你会计算它们的面积吗?(出示课件3)
师小结:(板书;长方形的面积=长×宽)
这节课我们就来学习平行四边形的面积。(板书:平行四边形的面积)
二、探究建模
(一)数格子法(出示课件4)
1、师:前面我们已经知道可以用数格子的方法得到一个图形的面积,看大屏,请同学们用数格子的方法数数出这两个图形的面积。注意一个方格代表1平方米,不满一格的都按半格计算。
t1:谁来汇报一下你数的结果?
2、师小结:刚才,我们用数格子的方法得到了这个平行四边形的面积,可是,在日常生活中,是不是每一个平行四边形的面积都有方格让我们去数呢?(不是)所以说数方格的方法也不是任何时候都适用的。如果平行四边形的面积也能像长方形一样有它的面积计算公式就更好了,对不对?
那么在研究这个问题之前,让我们看大屏幕,继续观察这两个图形,并且完成第80页下方的表格。
t2:通过这个表格,你发现了什么呢?
3、师小结:是的,通过这个表格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
t3:根据你的发现,请同学们做个大胆的猜测,平行四边形的面积可以怎样计算?(师板书学生的猜测)
(二)转化法
1、用画图的方法验证猜想一。(平行四边形的面积=邻边之积)
学生画图,同桌交流,教师演示。
师小结:可见“平行四边形的面积=邻边之积”的猜测是不对的。
2、用“剪—平移—拼”的方法验证猜想二(平行四边形的'面积=底×高)学生剪拼,同桌讨论,课件演示。(出示课件5)
t1:拼成的长方形和原来的平行四边形相比,什么变了,什么没有变?
t2:再看看,转化后的长方形的长与平行四边形的底,转化后的长方形的宽与平行四边形的高有什么关系?
生:转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高。
t3:那么,现在同学们知不知道平行四边形的面积可以怎样计算呢?
生:平行四边形的面积=底×高
t4:有没有不同的验证方法呢?(出示课件6)
师小结:其实,我们沿着平行四边形的任意一条高都能将一个平行四边形转化成长方形,因为转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高,所以,平行四边形的面积=底×高
(三)整理结论
1、师:我们一起读一下我们发现的结论。
刚才同学们不仅用不同的方法验证了两个猜想,并且用了转化的方法,真是了不起。
2、师:现在请同学们翻开书,自己看书学习81页倒数第2自然段的内容。
3、师:你学到了些什么?
4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah
师:有了平行四边形的面积计算公式,现在同学们就可以用它来计算了。
t5:现在同学们能知道这两个花坛哪个的面积大了吗?(出示课件7)
师小结:同学们学得真不错!我们鼓掌奖励自己吧!
师:下面老师再出几个题考考大家,敢挑战吗?
三、解释应用
1、计算平行四边形车位面积。(出示课件8)
t6:要计算一个平行四边形的面积需要知道哪些条件?
t7:(教师画图,平行四边形的底和高不对应)你能计算书这个平行四边想的面积吗?
2、选择条件计算平行四边形的面积。(出示课件9)
3、终极挑战。(出示课件10)
4、奖励题。知道平行四边形的面积和底,求高。(出示课件11)
四、课堂总结
通过这节课的学习你有哪些新的收获?
平行四边形面积教案 篇6
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的`高有什么样的关系?
教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
课后反思:
平行四边形面积教案 篇7
一、教学内容
北师大版小学数学五年级上册第25页
二、教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作,观察,比较活动,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3、引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
三、教学重点
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
四、教学难点
推导出平行四边形面积的计算公式。
五、教具
学具准备:自制长方形框架、面积测量纸、课件、平行四边形卡片、剪刀、三角板、直尺等。
六、教学过程
创设情境,导入新课
师:(出示教具)这是一个长方形框架,它的长是4厘米,宽是3厘米,这个长方形面积是多少?
师:拉动长方形(教师演示,如下图)现在变成了什么图形?(平行四边形)它的面积是多少?
教师在平行四边形的相邻两边标注上长度,对认为面积不变的同学质疑,你认为平行四边形的面积是怎样计算的?说说你的想法?xHAQX74J0X这个想法对不对呢?下面我们来研究一下。二:猜想验证,合作探究
1:用数方格的方法来算一算这个平行四边形的面积,教师演示操作给学生观察。数一数,你发现了什么?(平行四边形面积比长方形的面积小,用4×3计算不对,平行四边形面积不能用两条边相乘的方法计算。)LDAYtRyKfE上节课我们已经动手做过把平行边形转化成长方形,大家想出好多种方法,你还记得吗?(课件演示)在这样的转化中,你发现什么没有变?(面积没有变)出示问题:
①为什么把平行四边形转化成长方形面积不变,而刚才把长方形拉成平行四边形面积又变小了,你能发现什么?
②比较一下,两者有什么区别和联系?你能发现平行四边形的面积和哪些边有关系?小组讨论,教师巡视指导。汇报交流,教师总结。(把平行四边形转化成长方形的时候底没有变,高变成了长方形的宽,也没有变短。而长方形拉成平行四边形的时候,底没有变,但宽没有变成高,高比宽短了。两者底都没有变,高不变,面积就不变,高变小,面积就变小,说明平行四边形的面积与底和高有关系。)
2:那么怎样计算平行四边形的面积呢?拿出学具(二个平行四边形图形)要求:做出平行四边形的高,量出表中边的长(取整厘米数),用数方格的'方式计算出二个图形的面积,完成表格。完成后想一想,平行四边形面积如何计算?dvzfvkwMI1图形图一图二底边长底边上的高面积(通过数方格我们发现这个平行四边形的面积等于底乘高)
3:你能发现平行四边形面积的计算公式吗?平行四边形的面积公式与长方形的面积公式有联系吗?(平行四边形的面积=底×高。长方形的面积=长×宽,长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)rqyn14ZNXI如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,用字母表示平行四边形面积计算公式就是:EmxvxOtOco S=ah
七、应用实践,巩固提高
问:要求平行四边形的面积必须要知道什么条件呢?(底和高)
1、计算下面每个平行四边形的面积:2cm 5.7cm 11.5dm 2.6cm 15 dm
2、选一选要计算下面这个平行四边形的面积,下面几个算式,你选哪个?为什么?
3、填一填⑴一个的长是是3cm,4厘米7.5厘米A、7.5×4C、7.5×66厘米5厘米长方形5cm,高这个长B、5×4D、5×6方形的面积是()平方厘米。⑵一个平行四边形的底是8m,高是5m,这个平行四边形的面积是()平方米。 ⑶一个平行四边形的面积是60平方分米,高是12分米,这个平行四边形的底是()分米。
4、一块平行四边地,底长150m,高80m,这块地有多少公顷?在这块地里共收小麦7680千克,平均每公顷收小麦多少千克?
八、总结收获,布置作业
这节课你学到了什么知识,你能小结一下吗?你还有什么疑惑?还有什么遗憾?作业:第26页练一练1、2、3题。
平行四边形面积教案 篇8
教学内容:人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的`联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:通过转化的方法理解平行四边形的面积计算公式。
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
平行四边形面积教案 篇9
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的'高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形面积教案 篇10
教学内容:
教科书第79~81页
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学过程:
一、导入
1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的`底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
三、巩固和应用
1.出示例1。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
平行四边形面积教案 篇11
【教学内容】教材第134页复习第12~15题。
【教学目标】
【教学重点 掌握求平行四边形、三角形和梯形的面积计算公式,会进行面积单难点】位的换算。
【教学过程】
一、揭示课题
我们今天复习平行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求平行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。
二、复习面积单位
1、(1)我们学过哪些面积单位?并按一定州顺序排列。
(2)每相邻两个面积单位间的进率各是多少?
2、练习做期末复习第12题。
学生做,并说计算过程。
三、复习平行四边形、三角形和梯形的.面积计算及其联系
1、说一说这三种图形面积计算公式是什么?并说一说每个图形的面积是怎样推导出来的?
2、我们在学习平行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。
3、把长方形、正方形、平行四边形、三角形和梯形之间的联系
用图表示出来。
(1) 学生画图:
(2)从图上可以看出,谁的面积是基础?
4、(1)练习做期末复习第14题。
学生计算后反馈。
(2)填空:
①一个三角形和一个平行四边形等底等高,如果三角形的面积是60平方米,那么平行四边形面积是( )平方米;如果平行四边形面积是60平方米,那么三角形的面积是( )平方米。
②一个三角形底不变,高扩大3倍,面积( )倍。
③一个平行四边形底扩大16倍,高缩小2倍,面积就( )倍。
(3)应用题练习,期末复习第15题。
注意第(2)题单位不统一,先统一单位后再解答。
四、复习土地面积单位
1、(1)计算土地面积常用的单位有哪些?
(2)1平方千米,1公顷各有多大?
(3)测量土地时,一般用什么作长度单位?算出面积是多少平方米后,再换算成公顷或平方千米。
2、应用题:
(1)一个平行四边形果园,占地3公顷,它的底是400米,高是多少米?
学生做完后,师问:这题要注意什么?
(2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨?
反馈时,说明最后结果单位要统一成吨。
3、综合练习:做期末复习第13题。
在书上做并说明理由。
五、全课总结
这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出平等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。
【作业设计】
补充
1、判断:
(1)两个完全一样的直角三角形能拼成平行四边形。( )
(2)两个面积相等的三角形一定等底等高。 ( )
(3)62=62=12。 ( )
(4)40公顷4平方千米。( )
2、一块平行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,平均每公顷收籽棉多少克?
3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少平方分米?
平行四边形面积教案 篇12
教学内容
义务教育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。
教材分析
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
教学目标
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
教学重点
理解并掌握平行四边行的面积计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具、学具准备
课件,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、创设情境,引出课题
1、课件出示情境图。
师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的`学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
板书课题:平行四边形的面积.
[设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]
二、探究新知,发现新知
1、猜一猜。
师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?
平行四边形面积教案 篇13
[教学内容]
人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程
设计思路
一、以景置疑,引出课题
1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习平行四边形的面积,板书课题。
以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的面积是一样的,也有的.可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。
通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,()的面积大。
A、甲B、乙C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。
A、变大B、变小C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。
分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?
自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
平行四边形面积教案 篇14
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的.面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
【平行四边形面积教案】相关文章:
平行四边形的面积教案03-31
《平行四边形的面积》教案01-02
《平行四边形面积的计算》教案09-14
平行四边形的面积教案(通用3篇)03-22
平行四边形的面积教案范文(精选5篇)04-24
面积的教案11-19
平行四边形的面积教学反思06-03
《平行四边形的面积》教学反思04-27
圆的面积教案09-20