- 相关推荐
函数奇偶性教案
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!以下是小编整理的函数奇偶性教案,希望能够帮助到大家。
函数奇偶性教案1
教学目标:
了解奇偶性的含义,会判断函数的奇偶性。能证明一些简单函数的奇偶性。弄清函数图象对称性与函数奇偶性的关系。
重点:
判断函数的奇偶性
难点:
函数图象对称性与函数奇偶性的关系。
一、复习引入
1、函数的单调性、最值
2、函数的奇偶性
(1)奇函数
(2)偶函数
(3)与图象对称性的关系
(4)说明(定义域的'要求)
二、例题分析
例1、判断下列函数是否为偶函数或奇函数
例2、证明函数在R上是奇函数。
例3、试判断下列函数的奇偶性
三、随堂练习
1、函数()
是奇函数但不是偶函数是偶函数但不是奇函数
既是奇函数又是偶函数既不是奇函数又不是偶函数
2、下列4个判断中,正确的是_______.
(1)既是奇函数又是偶函数;
(2)是奇函数;
(3)是偶函数;
(4)是非奇非偶函数
3、函数的图象是否关于某直线对称?它是否为偶函数?
函数奇偶性教案2
学习目标 1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2、 求出 , 时的函数值,写出 , 。
结论: 。
3、 奇函数:___________________________________________________
4、 偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的`奇函数 满足:当x0时, ,求 的表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
函数奇偶性教案3
今天我说课的课题是高中数学人教A版必修一第一章第三节函数的基本性质中的函数的奇偶性,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析
(一)教材特点、教材的地位与作用
本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点
1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的方法与格式。
(三)教学目标
1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;
2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析
1.教学方法:启发引导式
结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.
2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习.
三、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学
四、教学过程
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。
(一)设疑导入,观图激趣
让学生感受生活中的美:展示图片蝴蝶,雪花
学生举例生活中的对称现象
折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。
问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的.背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开.观察坐标喜之中的图形:
问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
(二)指导观察,形成概念
这节课我们首先从两类对称:轴对称和中心对称展开研究.
思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何
给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律
借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.
思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征
引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
(1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢(同时打出y=1/x的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:
(2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为奇函数
强调注意点:"定义域关于原点对称"的条件必不可少.
接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论
给出例题,加深理解:
例1,利用定义,判断下列函数的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?
得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数
接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)
然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:
函数f(x)是奇函数=图象关于原点对称
函数f(x)是偶函数=图象关于y轴对称
给出例2:书P63例3,再进行当堂巩固,
1,书P65ex2
2,说出下列函数的奇偶性:
Y=x4;Y=x-1;Y=x;Y=x-2;Y=x5;Y=x-3
归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数
(三)学生探索,发展思维
思考:
1,函数y=2是什么函数
2,函数y=0有是什么函数
(四)布置作业
课本P39习题1.3(A组)第6题,B组第3
函数奇偶性教案4
教学目标
1。了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2。通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3。通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性, 奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的'步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让 在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式 时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
函数奇偶性教案5
一、教学目标
【知识与技能】
理解函数的奇偶性及其几何意义.
【过程与方法】
利用指数函数的图像和性质,及单调性来解决问题.
【情感态度与价值观】
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.
二、教学重难点
【重点】
函数的奇偶性及其几何意义
【难点】
判断函数的奇偶性的方法与格式.
三、教学过程
(一)导入新课
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
(二)新课教学
1.函数的奇偶性定义
像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.
(1)偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(学生活动):仿照偶函数的`定义给出奇函数的定义
(2)奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
2.具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
3.典型例题
(1)判断函数的奇偶性
例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)
解:(略)
总结:利用定义判断函数奇偶性的格式步骤:
1 首先确定函数的定义域,并判断其定义域是否关于原点对称;
2 确定f(-x)与f(x)的关系;
3 作出相应结论:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(三)巩固提高
1.教材P46习题1.3 B组每1题
解:(略)
说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.
2.利用函数的奇偶性补全函数的图象
(教材P41思考题)
规律:
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
说明:这也可以作为判断函数奇偶性的依据.
(四)小结作业
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
课本P46 习题1.3(A组) 第9、10题, B组第2题.
四、板书设计
函数的奇偶性
一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
三、规律:
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
函数奇偶性教案6
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以
的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值
开始,逐渐让
在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式
时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如
)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
教案网权威发布高中高一下册语文《孔雀东南飞》教学设计,更多高中高一下册语文《孔雀东南飞》教学设计相关信息请访问教案网。
设计说明
1、指导思想
本设计依据新课标的要求,立足于培养学生识记理解古汉语知识和鉴赏古典文学作品的能力,在自主、合作、探究的学习过程中养成自主学习、深入探究的良好习惯。
2、教学设想
《孔雀东南飞》是我国古代最长的叙事诗,也是乐府诗中的一朵奇葩,在思想上和艺术上都有极高的成就,对于这样一篇经典名作,我认为应该不惜时间精读细研,因此我确定用三课时完成。
本单元的话题为“爱的生命的乐章”,与单元话题相一致,我把本课的教学重点确定为:理解青年男女对美好爱情的执著追求和封建礼教、专制家长摧残青年男女爱情的罪恶。要深入理解这一重点问题,必须先扫清字词障碍,读懂原文。本文写作年代离我们十分久远,文中有很多生词、古今异义词等文言知识,可通过本课的学习让学生积累有关文言基础知识,培养学生阅读文言文的能力。另外,人物形象的塑造、思想价值的'实现要借助于一定的写作手法,乐府诗常用的赋、比、兴手法也应是学习的内容之一。因此,我确定了这样三个方面的学习目标。
疏通文意,学习积累文言基础知识,学生依靠课下注释和工具书基本可以完成,因此可采用自主、合作、探究的学习方式以学生自行解决为主,教师可就疑难问题略作指导。重点目标的实现可从分析人物形象入手,采用问题研讨的方式引导学生层层深入地理解作品思想内涵和社会意义。难点(起兴手法)的突破可引导学生拓展联想,用学生较为熟悉的例子帮助他们理解。
3、本设计的特点
本设计没有刻意求新,而是重在扎实严谨上作文章。教学内容的安排由易到难;各教学环节环环相扣,层层深入,过渡严谨自然。教学活动突出了学生的主体地位。
《孔雀东南飞》教学设计
教学目标:
1、学习积累文言基础知识:实词、多义词、偏义复词、古今异义词、互文等,培养学生阅读文言文的能力
2、分析人物形象,理解刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶,深入理解作品的社会意义,培养学生分析鉴赏文学作品的能力并引导学生树立正确的爱情观、价值观
3、了解乐府诗歌的常用表现手法赋、比、兴
教学重点:刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶
教学难点:赋、比、兴手法
教学用具:课件
教学时数:三课时
教学过程:
第一课时
活动内容:疏通文本,理清情节结构,初步认识作品思想内涵
活动过程:
一、导入
爱情是文学作品永恒的主题,古今中外的文人墨客写下无数优美的诗篇讴歌美丽的爱情。但在中国漫长的封建社会里,封建礼教、家长制等传统文化的冷漠残酷使无数美丽的爱情遭到了无情的摧残,从而造成了一幕幕爱情悲剧。今天就让我们走近焦仲卿和刘兰芝的爱情悲剧,感受封建家长制的罪恶和这种制度下的青年男女对爱情的不屈追求。
二、学生自己阅读注解,识记有关文学常识
1、乐府:本是汉武帝设立的音乐机关,它的职责是采集民间歌谣或文人的诗来配乐,以备朝廷之用。它所搜集整理的诗歌后世就叫“乐府诗”或“乐府”。
2、《孔雀东南飞》是我国古代最长的一首长篇叙事诗,也是乐府民歌的代表作之一,与北朝的《木兰辞》并称“乐府双璧”。
3、本诗出自南朝徐陵编写的《玉台新咏》。《玉台新咏》是继《诗经》、《楚辞》之后最早的一部诗歌总集。
三、初读课文,疏通文意,掌握有关文言知识
1、学生默读全诗,借助工具书和注释疏通文意,不懂的词句做出记号
2、就自己不懂的词句在小组内讨论交流
3、教师解答学生解决不了的疑难字词,并指导学生理解归纳本课中古今异义词、偏义复词、互文等文言知识
出示示例:(前两类现象各出示一个例子,其他让学生自己去整理)
①古今异义词
汝岂得自由(古:自作主张 今:没有束缚)
可怜体无比(古:可爱 今:值得同情)
叶叶相交通(古:交错相通 今:指运输)
本自无教训(古:教养 今:失败的经验)
处分适兄意(古:处理 今:处罚)
②偏义复词
两个意义相关或相反的词连起来当作一个词使用,实际上只取其中一个词的意义,另一个词只作陪衬。如:
昼夜勤作息(只取“作”之意,“息”只为陪衬)
便可白公姥(只取“姥”之意)
我有亲父母(只取“母”之意)
逼迫兼弟兄(只取“兄”之意)
③ 互文句
东西植松柏,左右种梧桐
枝枝相覆盖,叶叶相交通
四、在扫清文字障碍的基础上,再浏览课文。
1、结合诗前小序,了解故事梗概
2、理清情节结构,给故事发展的每一个阶段拟一个小标题
学生回答后教师出示:
故事开端(1-2段) 自请遣归
教案网权威发布高中高一数学教案:两角差的余弦公式教案,更多高中高一数学教案相关信息请访问教案网。
两角差的余弦公式
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
【学习目标】
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用
【难点】两角差余弦公式的推导过程
预习自学案
一、知识链接
1. 写出 的三角函数线 :
2. 向量 , 的数量积,
①定义:
②坐标运算法则:
3. , ,那么 是否等于 呢?
下面我们就探讨两角差的余弦公式
二、教材导读
1.、两角差的余弦公式的推导思路
如图,建立单位圆O
(1)利用单位圆上的三角函数线
设
则
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
从而得到两角差的余弦公式:
____________________________________
(2)利用两点间距离公式
如图,角 的终边与单位圆交于A( )
角 的终边与单位圆交于B( )
角 的终边与单位圆交于P( )
点T( )
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
(3) 利用平面向量的知识
用 表示向量 ,
=( , ) =( , )
则 . =
设 与 的夹角为
①当 时:
=
从而得出
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
此时 =
从而得出
2、两角差的余弦公式
____________________________
三、预习检测
1. 利用余弦公式计算 的值.
2. 怎样求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
训练案
一、 基础训练题
1、
2、
3、
二、综合题
--------------------------------------------------
函数奇偶性教案7
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数,其定义域关于原点对称:
如果______________________________________,那么函数为奇函数;
如果______________________________________,那么函数为偶函数。
(2)奇函数的.图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4; (2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函数( )是偶函数,则b=___________ .
B3、已知,其中为常数,若,则
_______ .
B4、若函数是定义在R上的奇函数,则函数的图象关于( )
(A)轴对称(B)轴对称(C)原点对称(D)以上均不对
B5、如果定义在区间上的函数为奇函数,则=_____ .
C6、若函数是定义在R上的奇函数,且当时,,那么当
时,=_______ .
D7、设是上的奇函数,,当时,,则等于( )
(A)0.5 (B) (C)1.5 (D)
D8、定义在上的奇函数,则常数____ , _____ .
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
补充练习题:
1.下列各图中,不能是函数f(x)图象的是( )
解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.
2.若f(1x)=11+x,则f(x)等于( )
A.11+x(x≠-1) B.1+xx(x≠0)
C.x1+x(x≠0且x≠-1) D.1+x(x≠-1)
解析:选C.f(1x)=11+x=1x1+1x(x≠0),
∴f(t)=t1+t(t≠0且t≠-1),
∴f(x)=x1+x(x≠0且x≠-1).
3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=( )
A.3x+2 B.3x-2
C.2x+3 D.2x-3
解析:选B.设f(x)=kx+b(k≠0),
∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,
∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.
函数奇偶性教案8
教学目标
1。了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度认识单调性和奇偶性。
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2。通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。
3。通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的'定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程当中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让 在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式 时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
【函数奇偶性教案】相关文章:
幂函数教案04-07
函数概念教案11-26
《函数的应用》教案02-26
初中数学函数教案02-23
《对数函数》教案03-01
《二次函数》教案03-02
函数数学教案11-26
反比例函数教案01-15
二次函数教案07-28