- 《一元二次方程》的优秀教案 推荐度:
- 列方程解决实际问题教案 推荐度:
- 列方程解决实际问题教案 推荐度:
- 相关推荐
《方程》教案(15篇)
作为一名人民教师,就有可能用到教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写呢?下面是小编精心整理的《方程》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《方程》教案1
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的'内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
《方程》教案2
教学过程:
一、课前复习
1、判断下面各式是不是方程
30+X=150 X-54>80 65—45=20 7X=56
2、根据题意列方程
(1)山东省高中学历的人数是1002万人,是大专学历的3倍,大专学历的人数是X万人。
(2)山东省总人口是9079万人,其中男人4595万人,女人X万人
(3)山东省乡村人口是5629万人,比城镇人口多2179万人,城镇人口是X万人。
二、合作探索:
1、出示情景图:让学生看图及下面的信息,你知道了哪些信息?(20xx年6月1日黔金丝猴数量已从1993年的600多只,增加到860只。)根据信息你能提出什么问题?
2、提出问题,解决问题。根据学生的回答,教师把问题板书出来:20xx年比1993年大约增加了多少只黔金丝猴?
根据提出的问题,同学讨论应该怎样列式解答。放手让学生自己解答,个别学生老师指导。指名回答。用算术方法解答:860—600=260(只)除了算术方法你能根据题意列出含有未知数的方程吗?具有怎样的等量关系?(1993年的只数+增加的只数=20xx年的只数。用x表示增加的'只数,可列方程:600+x=860)
3、合作探索,找出解决问题的方法。
这个方程怎样求出x呢?
让学生讨论找出解决问题的方法。我们可以借助天平来研究一下:在天平的左边放上一瓶啤酒,要使天平平衡右边也要放上同等重量的东西,天平才能平衡。如果在左边加上10克重的物体,要使天平平衡右边也要加上10克重的物体,反过来在左边减去10克的物体,要使天平平衡右边也要减去10克的物体,看教材62页图,这说明了什么?(说明了等式的两边同时加上或减去同一个数,等式仍然成立。)
同桌看图讨论:天平左边的盘子里是x,右边的盘子里是20 ,这时天平平衡那么说明了什么呢?(说明x=20的时候才能使天平平衡,也就是等号两边正好相等。
师小结:我们可以借助这个发现来求出方程里面的未知数x。我们把使方程左右两边相等的未知数就叫做方程的解,x=10是x+10=10+10的解,而求方程的解的过程叫做解方程。解方程和方程的解是两个不同的概念。
4、解方程,体会解方程和方程的解有什么不同?
我们来解600+x=860这个方程,教师一边板书,一边指出解方程的步骤;
先写个“解”字,然后根据等式两边同时减去一个数等式仍然成立,同时减去600,理解解方程过程的简化书写,并且解题时适当运用简化书写。
教师示范解题过程,关注“解”和“等于号”书写要求。
指导检验:X=860是不是正确答案呢?如何检验?教师板书检验过程。
5、课堂练习:出示:X―30=80 反馈,关注书写过程并说说检验过程。
三、综合练习:
1、完成书本第64页自主练习1题,学生完成后同桌交流
2、括号里哪一个x的制式方程的解?
43+x=62 (x=105 x=19) x-56=37 (x=19 x=93)
先独立思考,学生回答,并说说自己的想法
3、看图列方程。
出示自主练习的第2题,学生看图列式。
提问:什么是等式?什么是方程?解出上述方程。
四、学习回顾:
通过学习,你知道了什么?有哪些收获?个人课堂学习表现如何
学生选择两题(加法方程和减法方程各一个)独立完成,要求写出检验过程,反馈计算情况。
作业设计:
1、基础作业:自主练习1、2、3
2、拓展作业:一点通:部分练习
板书设计:
解简易方程
解;:设大约增加了x只黔金猴。
600 + x = 860
600+x-600 = 860-600
X =260
检验:方程左边=600+x
=600+260
=860
=方程右边
所以,x=260是方程600+x=860的解
课后反思:
《方程》教案3
教学目标
知识与能力
1.通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步.
2.在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力.
3.在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
教学目标
过程与方法
1.能结合实际问题情境发现并提出数学问题.
2.通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的`能力.
情感态度与价值观目标
1.勤于思考,乐于探究,敢于发表自己的观点;
2.以积极的态度与同伴合作,从解决实际问题中体验数学价值.
教学重难点
重点
会用一元一次方程解决实际问题.
难点
将实际问题转化为数学问题,通过列方程解决问题.
《方程》教案4
【教学目标】
1、知识与技能:
(1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;
(2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征; (3)理解一元二次方程的根就是二次函数与y=h(h是实数)图象交点的横坐标。 2、过程与方法:
(1)由一次函数与一元一次方程根的联系类比探求二次函数与一元二次方程之间的联系; (2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想。 3、情感、态度与价值观:
培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的.观点看问题的思维品质。
【重点与难点】
重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探索过程。 难点:准确理解二次函数与一元二次方程的关系。
【教法与学法】
教法(=):命题课,采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用”的探究过程。 学法:探究式学习。
【课前准备】
多媒体、PPT课件。
【教学过程】
附:板书设计:
《方程》教案5
设计说明
1、引导学生边观察、边思考,提高自主学习能力。
《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。 2。引导学生辨方程、写方程,重视学情反馈。
数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。
课前准备
教师准备:PPT课件、学情检测卡、课堂活动卡
学生准备:小黑板、练习卡片
教学过程
情境引入,体会“等”与“不等”
师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。
师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)
师:哪个班赢了?你能用一个数学式子来表示吗?
(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)
师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)
设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。
情境呈现,抽象模型
1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)
自学提示:
(1)理解教材62页每幅图画及对应式子的含义。
(2)标示出你认为重要的内容。
(3)思考:方程应该具备哪几个条件?
(4)结合你对方程概念的'理解,完成教材63页“做一做”1题。
2、合作学习。
(1)你能自己写几个方程吗?小组内互相订正。
(2)组内交流收获。在小组内互相说一说:你学到了什么?
由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。
(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。
(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)
预设:
①全班同学的答案一致,全对。
②一部分小组全对,一部分小组有错误。
这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。
3、整理分类,加深对方程意义的理解。
(1)组织学生分组活动,根据黑板上的算式特点进行分类。
(2)交流汇报,说出分类依据。教师板书。
4、独立完成教材63页“做一做”2题,汇报,集体订正。
5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。
《方程》教案6
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男女生各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
方程x+y=0的解,方程2x+3y=2的解,方程组的解。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知是方程组的解,求a,b的值。
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组的解.
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的`解。
由学生独立完成,并分析讲解。
3.例 已知方程3X+2Y=10
⑴当X=2时,求所对应的Y 的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的代数式表示Y;
⑷用含Y 的代数式表示X;
⑸当X=-2,0 时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?
2.你还有什么问题或想法需要和大家交流?
3.教材P82
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
《方程》教案7
教案
【教学目标】
知识目标
1.理解分式方程的意义.
2.了解解分式方程的基本思路和解法.
3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.
能力目标
经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.
情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
【教学重难点】
重点:解分式方程的基本思路和解法.
难点:理解解分式方程时可能无解的原因.
【教学过程】
一、创设情境,导入新课
问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?
分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
二、探究新知
1.教师提出下列问题让学生探究:
(1)方程=与以前所学的整式方程有何不同?
(2)什么叫分式方程?
(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的.解?
(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?
(学生思考、讨论后在全班交流)
2.根据学生探究结果进行归纳:
(1)分式方程的定义(板书):
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程
练习:判断下列各式哪个是分式方程.
(1)x+y=5; (2)=;
(3); (4)=0
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.
(2)解分式方程=的基本思路是:将分式方程化为整式方程.具体做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.
3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.
4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.
5.归纳:
(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.
(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
三、巩固练习
1.在下列方程中:
①=8+; ②=x;
③=; ④x-=0.
是分式方程的有( )
A.①和② B.②和③
C.③和④ D.④和①
2.解分式方程:(1)=;(2)=.
四、课堂小结
1.通过本节课的学习,你有哪些收获?
2.在本节课的学习过程中,你有什么体会?与同伴交流.
引导学生总结得出:
解分式方程的一般步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.
(2)解这个整式方程.
(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.
五、布置作业
课本152页练习.
第2课时
【教学目标】
知识目标
会分析题意找出相等关系,并能列出分式方程解决实际问题.
ok3w_ads("s002");
同步练习
1.在某市举行的大型商业演出活动中,对团体购买门票思想优惠,决定在原定票价的基础上每张降价80元,这样按原定票价需花6000元购买的门票张数,现在只花费了4800元,求每张门票的原定价格?
2.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本笔记本的售价是多少元?
2.“六?一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
精选练习
列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
《方程》教案8
教学目标:
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的.方程去反映现实世界中等量关系,体会代数方法的优越性。
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
教学过程:
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
新课:
看一看课本99页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
《方程》教案9
课题:简易方程
复习目标:
1.使学生进五步理解用字母表示数的意义,会用字母表示数、数量、定律和计算公式。
2.理解方程的意义,会判断方程。能解方程并验算。
3.能根据题目中的数量关系,用方程解决实际问题,培养灵活的解题能力。
复习重点:理解题中的数量关系,根据数量关系列方程解决问题。
复习过程:
一、谈话导入
今天这节课将对议程这部分知识进行整理和复习。
一、概念回顾。
1、复习用字母表示数。
(1)填空。
图书角原来有X本书,被同学借走10本后还有( )本。
小芳今年岁,妈妈的年龄是小芳的6倍,妈妈今年( )岁。
一个正方形的连长是A分米,它的面积是( )平方分米。
指名口答,集体订正。
问:用字母表示数的简写应该注意什么?
(2)判断。
a×b×8可以简写成ab8。( )
a的立方等于3个a相加。( )
a÷b中,a、b可以是任何数。( )
3、总复习第3题。
学生独立填书,完成后集体订正。
2、复习方程
(1)什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?
(2)判断。
4+X>9是方程。( )
方程一定是等式。( )
x+5=4×5是方程。( )
X=4是方程2X—3=5的解。( )
(3)121页第4题
指名板演,核对时请学生说一说解方程的方法。
3、解决问题
(1)121页第5题
学生审题后同桌互说等量关系式。板书:地球赤道长度的7倍+2万千米=光每秒传播速度。
根据等量关系式让学生列方程解答,指名板演,集体订正。
说一说用方程解决问题的步骤是什么?
(2)补充练习
解方程。
10.2-5X=2.2 3×1.5+6X =33 5.6X-3.8=1.8
3(X+5)=24 600÷(15-X)=200 X÷6-2.5=1.1
解决问题。
一辆公共汽车到站时,有5人下车,9人上车,现在车上有21人,车上原来有多少人?
小明是5月份出生的,他今年的年龄的3倍加上7正好是5月份的总开数。小明今年多少岁?
学校买回3个足球和2个篮球共90元,足球每个22元,篮球每个多少元?
学校买10套课桌用500元,已知桌子的单价是凳子的'4倍,每张桌子多少元?
爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?
油桶里有一些油,用去20千克,比剩下的油的4倍还多2千克,油桶里原有油多少千克?
三、作业。
P123第5题,P124第6题,P125页第14题。
教学反思:
运用等式的性质来解方程是新教材在代数知识上的最大改革。我为这项改革叫好!因为以往学生依据加减乘除法各部分之间的关系来解答时,必须熟记 6句关系式才能正确解方程,可现在大家只要理解并掌握了等式的性质后,完全可以做到以不变应万变,学困生对教材中的方程解法掌握情况都非常好。
可教研员明确指出除教材中出现的几种类型外,如a-x=b和a÷x=b也属于必考内容,这给我的教学带来了挑战,也给学生的学习带来了一定困难。我不想因此而回到老方法上去,也不想拔苗助长,直接用初中的移项来教学,我希望所有类型的方程解法都能植根于等式的性质基础之上,使学生体会到等式性质的“妙用”。因此,有必要特别用一节课的时间给学生补充讲解这类方程解法。
其次,学生在判断“a÷b中,a、b可以是任何数”一题时,全班发生明显分歧。有的认为字母a、b可以代表任何数,所以是对的;有的认为这里a不能是0,有的认为b不能是0,还有的认为a、b都不能是0。看来这题出得好!借此我帮助学生分析为除数不能为0的原因,主要有以下两点:
1、除数为0,被除数为除0以外的任何数时,无解。因为0乘任何数都得0,而不会等于被除数。
2、当除数为0,且被除数也为0时,有无数个解。因为0乘任何数都得0,商不唯一,所以除数不能为0。
在经过讲解后,学生终于明白了其中的道理。
最后,在练习中要针对学生以下薄弱点加强引导:
1、加强两种不同类型方程的对方,防止混淆。如:5.6X-3.8=1.8和5.6X-3.8X=1.8
2、补充讲解当一道算式中既有乘法又有平方时,应该先算平方,再算乘法。如:当X=5时,3X2等于(),应该先算52=25,再将3乘25=75。
3、解方程时,尽量让所有的未知数在等式的一边,而不要出现等式两边都有未知数的情况。如“爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?”就应该推荐大家根据爸爸的年龄—儿子的年龄=相差的年龄的等量关系式来列方程,而不要列成X+32=9X,否则也得多向学生介绍一种类型方程的解法。
4、注意培养学生养成检验的习惯,即使不用笔读检验,也应及时进行口头检验。
《方程》教案10
教学要求:
1、使学生了解列方程解应用题的一般步骤,理解用算术方法和列方程解应用题的思路区别。
2、初步掌握列方程解应用题的思考方法,会用方程解答两步计算应用题。
教学过程:
一、复习准备
1、计算下列各题
(1)甲数是278,乙数比甲数的6倍还多32 ,乙数是多少?
(2)甲数是278,比乙数的6倍还多32,乙数是多少?(用两种方法计算)
2、计算后讨论
(1)这两题不同在哪里?
(2)第2题用两种方法分别是怎样解的?
二、教学新知:
1、出示例4
(1)审题:说说已知条件和问题
(2)分析解答:
学生试着用两种方法(算术方法和方程)
(3)讨论:你是怎样解答的?
解法1:(1700-32)÷6
=1668÷6
=278(元)
解法2:解:设人均收入X元,根据题意列方程,得:
6x+32=1700
6x=1700-32
6x=1668
x=278
(4)比较两种解法有什么不同?
用算术方法解时怎样思考?
列方程解时又如何思考的?
教师指出:两种解法的思路不同,象这样的逆向题一般用方程解比较方便。
2、根据图意列方程
(1)课本练一练第一题
(2)第2题
(3)说说与第三题的相等关系。
三、巩估练习
1、王大叔承包的果园,有苹果树280棵,比梨树的3倍少20课,有梨树多少棵?
(1)先说出相等关系再用方程解。
(2)解题后讨论:
你是根据怎样的相等关系列方程的.?
梨数的3倍-20棵=苹果树280棵
能否列成3x-280=20这样的方程?那个方程比较容易理解?
2、学生独立解答练一练的2、3两题。
(1)要求先写出相等关系再用方程解。
(2)你还会列出其他的方程吗?
四、课堂总结
1、学生讨论列方程解应用题的思考方法。
2、列方程解应用题时必须先找出数量间的相等关系,设所求的数为X,然后根据相等 关系列出方程。
《方程》教案11
学习目标:
1、使学生会用列一元二次方程的方法解决有关增长率的应用题;
2、进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、 复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知
1.情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20xx年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20xx年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长20xx年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2.合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20xx年实际完成的亩数是30(1+x),第二次增长后,即20xx年实际完成的`亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.
教师引导学生运用方程解决问题:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.
②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).
三、例题学习
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间 基数 降价 降价后价钱
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由学生写出解答过程)
四、巩固练习
一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
五、课堂总结:
1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2、注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?
《方程》教案12
教学目标:
通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
重点:
让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
难点:
寻找等量关系
教学过程:
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的`劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?
《方程》教案13
教学要求:
①使学生学会列方程解相遇问题求相遇时间的应用题,进一步认识相遇问题的数量关系
②通过两种不同解法的教学,培养学生灵活解题的能力,以及思维的发散性和灵活性
③在教学中激发学生的学习兴趣,并结合学生的生活实际,感受到数学与生活的联系,会利用数学知识解决一些简单的实际问题;
④在教学中渗透与实践胡瑗教育。
教学准备:多媒体课件
教学过程:
一、复习旧知,导入新课
⒈口头列式
①一辆汽车每小时行驶70千米,4小时行驶多少千米?
②小兵每分钟行驶60米,5分钟行驶多少米?
⒉复习:小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米,经过4.5分钟两人相遇。两地相距多少米?
生读题,列式解答。
问:你用什么方法解答的?你是怎么想的?
生回答,师。
①两地相距的米数=小强走的总路程+小芳走的总路程;
②两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师揭示课题,引入新课
评析:复习紧扣本课知识,目的明确,效果实在,为学生学习新知奠定了良好的知识基础。
二、讲授例题,学习新课
出示例3:两地相距540米。小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米。经过几分钟两人相遇?
师让学生认真读题,比划一下例题内容,并和同学交流一下,弄清题目意思。
问:读了题目有不明白的地方?
学生提问,老师或者学生帮助释疑。
问:你刚才读懂了题目中的数量有怎样的等量关系?
生想法一:两地相距的米数=小强走的总路程+小芳走的总路程
生想法二:两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师用课件演示学生的想法
让学生独立解答,指名板演。
集体订正,学生说己列方程的思考方法。
问:这道例题我们可以用什么方法来检验?
生叙述。
师了解例题学生完成的情况,对学习有困难的学生进行个别指导。
评析:例题教学,把主动权还给学生,学生运用已有的知识掌握例题的解题思路和解题方法,教师只是学生学习知识过程中的一个合作者。这样安排,创设了和谐的师生关系,培养了学生善于思考的习惯,提高了学生解决问题的能力。
三、巩固练习
1、练一练:
⑴两艘军舰从相距609千米的两个港口同时相对开出。一艘军舰每小时行42千米,另一艘军舰每小时行45千米。经过几小时两艘军舰相遇?
⑵甲、乙两艘轮船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米。航行几小时后两船相距315千米?
指名板演,让学生注意区别两艘轮船的行驶方向以及数量之间的等量关系。
2、填空:
⑴一辆轿车和一辆卡车同时从两地出发,相向而行,经过X小时相遇。已知轿车每小时行70千米,卡车每小时行65千米。70X表示(),65X表示(),70X+65X表示()。
⑵师徒二人同时加工一批零件,徒弟每天加工12个,师傅每天加工20个,两人一同做了α天。12α表示(),20α表示(),这批零件一共有()个。
3、只列方程不计算:
⑴南通和南京相距325千米。两辆汽车分别从南通和南京同时出发,相对而行。从南京开出的汽车每小时行68千米,从南通开出的汽车每小时行62千米。经过多长时间,这两辆汽车在途中相遇?
⑵甲乙两个工程队共同铺铁路,甲队每天铺70米。乙队每天铺64米。铺了多少天后,甲队比乙队多铺36米?
评析:让学生及时巩固了新课内容,学会分析相遇问题的数量关系,掌握基本的解题思路和解题方法,同时让学生把所学的新知识运用到生活中,解决生活中类似的一些常见问题,体现让数学回归生活的教学理念,有效避免了对应用题进行机械的程式化训练。
四、课堂作业:数学书第100页的1、2、3题
五、课堂:
问:(1)今天的学习有什么不懂的地方,需要老师或者同学帮助的?
(2)今天的学习你有什么收获?
评析:本课,既有知识的归纳,也有情感的交流,拉近了师生之间的距离,为下面知识的综合运用营造了良好的探索氛围。
六、综合提高,学生活动
电脑屏幕出示下图:(略)
问:这是哪儿?对了,这是我们家乡正在修建的`市民广场。从图上,你获得了哪些信息?
生汇报,师注意归纳。
师:现在要在广场的四周铺设一条绿化带,准备让两个工程队共同完成。(配音:第一队每天铺20米。第二队每天铺30米)你能运用今天所学的知识,提几个问题,并解答吗?
生汇报,师对表现优异的学习小组进行表扬。
评析:本课设计,既体现了应用题教学改革的方向,也是校本课程“胡瑗教育”的一次渗透、探索与实践。主要表现在:
(1)以课本为载体,灵活运用,适当拓展,增强课堂教学的新颖性、趣味性,是对胡瑗“讲授教学法”与“娱乐教学法”新的理解与尝试,能让教学学生“旨意明白,众皆大服”,且又愉悦身心,培养学生思维的敏捷能力。
(2)在本课应用题教学中,尝试进行问题开放、解题策略开放的练习,让学生以小组合作的方式提出不同的问题,而且自己想办法解决,充分发挥了同学们的学习主动性和积极性,注意了教师的主导作用与学生的主动性相结合的原则,这些是胡瑗商讨教学法在新课程背景下的体现。
(3)因材施教法由孔子创造,但胡瑗继承并发展了这一教学方法。本课例题的教学有两种不同的思路与解题方法,让学生根据自己的知识基础选择自己合适的方法解答,有利于不同层次的学生都有提高与发展,其实也是因材施教教育的一种体现。
《方程》教案14
解一元一次方程
【教学任务分析】教学目标知识技能
1.用一元一次方程解决“数字型”问题;
2.能熟练的通过合并,移项解一元一次方程;
3.进一步学习、体会用一元一次方程解决实际问题.
过程
方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.
情感
态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.
重点建立一元一次方程解决实际问题的模型.
难点探索并发现实际问题中的等量关系,并列出方程.
【教学环节安排】
环节教学问题设计教学活动设计
情
境
引
入牵线搭桥,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.
引出问题即课本例3
问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.
学生:独立完成,根据讲评核对、自我评价,了解掌握情况.
探究一:数字问题
例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?
【分析】1.引导学生观察这列数有什么规律?
①数值变化规律?②符号变化规律?
结论:后面一个数是前一个数的-3倍.
2.怎样求出这三个数?
①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?
②列出方程:根据三个数的和是-1701列出方程.
③解略
变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.
探究二:百分比问题(习题3.2第8题)
【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?
【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因为今年的人均收入比去年的'1.5倍少1200元,所以今年的收入又可以表示为_________元.
③根据“表示同一个量的两个式子相等”可以列出方程为________________________.
解答略教师:引导学生分析.
2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.
学生:观察、讨论、阐述自己的发现,并互相交流.
根据分析列出方程并解出,求出所求三个数.
备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.
变换设法,列出方程,比较优劣、阐述发现和体会.
教师:出示题目,引导学生,让学生尝试分析,多鼓励.
学生:根据引导思考、回答、阐述自己的观点和认识.
根据共同的分析,列出方程并解出,
(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)
尝试应用
1、填空
(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.
(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.
(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.
2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.
通过(3)题理解连续数的表示法,并感受怎么表示最简单.
通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.
教师:结合完成题目,汇总讲解,重点在于解法.
成果
展示1.通过本节所学你有哪些收获?
2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.
补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.
2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).
A.69B.54C.27D.40
通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.
题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.
根据学生完成情况灵活设置问题.
作业
设计作业:
必做题:课本4、5、第94页6题.
选做题:同步探究.教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
授课教师:
20xx年10月31日
《方程》教案15
教学目标:
1、能说出什么叫一元一次方程;
2、知道“元”和“次”的含义;
3、熟练掌握最简一元一次方程的解法及理论依据;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的 教学,了 解化归的数学思想.
德育目标:
1、 渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习 惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
1、一元一次方程的概念;
2、最简方程 的解法;
难点:正确地解最简方程 。
教学方法:引导发现法
教学过程
一、 旧知识的复习:
1.什么叫等式?等式具有哪些性质?
2.什么叫方程?方程的解?解方程?
二、新知识的教学:
观察下列方程: …
想一想:这些方程有什么共同特点?(学生思考后回答)
特点:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
(板书课题,学生总结定义)
定义:只含有一个未知 数并且未知数的次数都是一次的方程叫做一元一次方程。
强调:“元”指什么?(未知数的`个数)
“次”指什么?(方程中含有未知数项的最高次数)
想一想:
(1)你认为最简单 的一元一次方程是什么样的?
(学生举例说明后总结出最简方 程)
最简方程:我们把形如 (其中 是未知数)的方
程称为最简方程。
强调:为什么 ?
(2)怎样求最简方程 (其中 是未知数)的解?
三、解下列方程
① ②
③ ④
(学生探讨求解过程及理论依据后板 书解题过程)
解:① 根据等式的基本性质2,在方程两边同除以3,
未知数系数化 为1,得
②③④解法略
强调:检验解的方法。
想一想:
解最简方程 (其中 是未知数)时的主要思路是什么?解题的关键步骤是什么?
(引导学生思考后回答)
主要思路:把最简方程的未知数的系数化为1,变形为 的形 式;
解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解 。
强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?( )
②最简方程一定有唯一的一个解。
四、巩固练习
1. 通过练习,请你总结一下,解方程 ( 是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2.检测:
3.课堂小结:
五、本节学习的主要内容
1、一元一次方程定义;
2、最简方程 (其中 是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
六、课堂作业
A、解下列方程:
(1) (2)
(3) (4)
B、如果关于 的方程 是一元一次方程,求 的值;
C、解关于 的方程:
(1) (2)
【《方程》教案】相关文章:
《方程》教案11-26
苏教版《方程》教案09-09
《方程的意义》教案02-18
《圆的方程》教案03-08
认识方程教案03-29
解方程教案04-02
方程的意义教案03-30
《方程》教案15篇01-27
圆的标准方程教案11-27
稍复杂的方程教案06-09