- 相关推荐
有关可能性教案锦集8篇
在教学工作者开展教学活动前,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编帮大家整理的可能性教案8篇,欢迎阅读,希望大家能够喜欢。
可能性教案 篇1
【教材分析】
(一)教学内容分析:
可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。
教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。
(二)学情分析
考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。
【教学目标】
1、 了解概率的意义
2、 了解等可能性事件的概率公式
3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率
进一步认识游戏规则的公平性
【教学重点、难点】
重点:概率的意义及其表示
难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。
【教学过程】
(一) 创设情境,引入新知:
引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?
分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。
解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)
(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)
(二) 师生互动,探索新知:
从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:
①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。
②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。
③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。
接着类似的可以让学生自己结合生活经验独立举一些例子。
(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)
然后教师归纳,在教学中我们把事件发生的可能性的'大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。
如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:
强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。
例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。
(三) 讲解例题,综合运用:
在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。
例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。
解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。
一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。
(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)
从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。
(四) 练习反馈,巩固新知:
做一做:
1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(根据班级各小组的实际人数回答)
2、 转盘上涂有红、蓝、绿、黄四种颜色,
每种颜色的面积相同。自由转动一次转盘,
指针落在红色 区域的概率是多少?
指针落在红色或绿色 区域的概率是多少?
(1/4,1/2)
(五)变式练习,拓展应用:
例2:如图所示的是一个红、黄两色各占
一半的转盘,让转盘自由转动2次,指针2
次都落在红色 区域的概率是多少?一次落在
红色 区域,另一次落在黄色 区域的概率是多少?
分析:
(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。
(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。
(3)统计所求各个事件所包含的可能结果数。
解:根据如图的树状图,所
有可能性相同的结果数有4种:
黄,黄;黄,红;红,黄;红,红。
其中2次指针都落在红色 区域的可能结
果只有1种,所以2次都落在红色 区域
的概率 ;
一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。
变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。
(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)
(五) 反思总结,布置作业:
引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。
五、教学说明:
本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。
可能性教案 篇2
教学目的:
1.帮助学生建立事件发生的确定性和不确定性的概念,数学 - 可能性的大小。
2.学会初步判断确定事件和不确定事件。
3.结合生活实例,进一步让学生体验生活中存在的数学问题。
教学工具:多媒体展示仪,因特网等。
教学过程:
一.情景引入:
1.多媒体展示:
情节:同学们在开联欢会,老师要求每人表演一个节目,用抽签的方法决定。
小莉在抽签之前想:我是金嗓子,最好让我抽到唱歌………。(停)
2.置疑:同学们,你们说,小莉肯定能如愿以偿吗?
生发表意见:
继续放情景:(两个结局)小莉抽到了表演唱歌的签;小莉没有抽到。
师:我们不能确定这类的事情,它有可能发生,也有可能不发生。
3.情景2:过年了,放鞭炮,小刚又蹦又跳,还大声叫着:我又长大一岁喽。
画外音:小明每年都肯定会长大吗?
生发表意见:
小结,媒体展示:在我们的生活中,有些事情是一定会发生或一定不会发生,例如,太阳肯定会发光,地球肯定每天都在转,月亮不可能从东方升起。我们称这类事件叫做“确定事件”;而有些事情可能发生,也有可能不发生,我们称这类事情叫做“不确定事件”
二.探索:
1.初步判断:(利用电脑选题系统来选择)
(1)人只要活着,总会变老。
(2)三天后会下雨。
(3)地球每天都在转。
(4)一个人从出生现在没吃过一点儿东西。
(5)吃饭时,人用左手拿筷子。
(6)每天都有人出生。
(7)在地球上,抛一块石头,它必然会向下落。
(8)抛一枚硬币,它出现正面。
学生边讨论边完成。
2.反馈:
用可能,不可能和肯定的词语来汇报完成的结果,小学数学教案《数学 - 可能性的大小》。
3.科学探索:
多媒体播放纪录片:(片断一)自然界中的花有很多种,有的花有浓郁的'香气,有的花没有香味,还有的花有很刺鼻子的味道。
(片断二)天文知识记录片,太阳系中的卫星和恒星的科普知识。
(片断三)人们在广场上放风筝。
银幕显示选择牌 : 一定 不可能 可能
事项: 花是香的 月亮绕着地球转 石狮子在天上飞
师;用确定事件和不确定事件来定义事件。
4.摸棋子游戏:
电脑展示:两个透明的箱子,一个里面都是红棋子,一个里面有红,兰,黄三色棋子。
画外音:小朋友,让我来摸以摸,猜一猜。
那个盒子里肯定能摸出红旗子:
哪个盒子里不可能摸出绿棋子?
哪个盒子里可能摸出绿棋子?
生讨论:确定出确定事件和不确定事件。
并说明理由?
三.巩固联练习:
1.用一定,不可能, 可能说一说
出示练习3;学生自由讨论,生活中,自然界中,哪些事件一定发生,哪些事件不可能发生,哪些可能发生。
2.用电脑操作系统完成涂色。
(1)要求摸出的一定要是红色的方块。
(2)摸出的不可能是兰。
(3)摸出的可能是黄色。
用“红色”,“蓝色”,“黄色”来做题。
四.总结。
可能性教案 篇3
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的'大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)
2、引出“不可能”、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)
(不可能--确定)
3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的
可能性就差不多了。
三、生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性教案 篇4
教学内容:
课本第104页情境图,第105页的例1、例2。
教学目标:
1.学生初步体验有些事件发生是确定的,有些则是不确定的,并结合已有的经验,用“一定(肯定)”、“可能”、“不可能”这些词语做出判断,并能简单地说明原因。
2、培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
3、培养学生勤于观察,乐于倾听、善于合作的良好学习习惯。积累丰富的生活经验,让学生体会到数学就在我们身边。
教学用具: 杯子4个、盒子6个、袋子8个、彩色球若干个。
教学过程:
一、游戏激趣,谈话导入
同学们,你们喜欢玩游戏吗?你们平常都玩些什么?现在我们来玩一个游戏,石头、剪子、布,谁来和老师玩呢?在玩之前,大家先猜一猜我们两个可能是谁赢?我们两个再玩?这回你猜谁可能赢?(应该有学生一会儿猜我赢,一会猜学生赢。)刚才猜我赢的同学,你这回为什么不猜我了?(学生可能会说,因为不可能你每回都赢。)
师:在结果出来之前,我们会对结果有一个猜测,有可能我会赢,也有可能他会赢,这就是一种可能性。(揭示课题,板书《可能性》)
二、组织活动,探究新知
1、活动一:摸球,体验“可能”(盒里装3个黄3个红)
规则:小组1人摸一次球,记住自己摸的球的颜色,再放回盒子。把盒子摇一摇,再请另一个同学摸。。
2、活动二:有奖摸球,体验“一定”“不可能”(盒内装6个黄球)
师:刚才同学们摸球了,有趣吗?
师:现在还想摸吗?好,(拿出事先准备好的盒子)玩具商店的老板正举行摸球有奖活动。如果你摸出的是红球,将会得到这个奖品(出示奖品)。谁来摸呢?
(指名一男生到讲台前来摸球,他的手刚要从盒子里拿出来却被老师按住。)
师:他摸的是什么球?(让学生猜测)
师:他用上了“可能”这个词,真好!请你拿出来吧。
(男生将球拿出,是黄球,孩子们发出一片惋惜声。再指名一女生,又摸出了一个黄球,孩子们又是一片惋惜声。这时学生情绪高涨,争先恐后。)
师:(再指名一女生)这一次摸到红球了吗?(停顿,让孩子们在脑子里猜测)好,请拿出来。
师:(再指名一男生)他能得到这个奖品吗?(他摸到的还是黄球。孩子们有些骚动。)
师:还想摸吗?(还是会有不少孩子举起了手。)
师:有没有人有意见?有没有想法?(有的学生可能会说出盒子里都是黄球)
师:真的吗?你想知道真正是怎样的吗?
(教师打开盒子,让学生看到了六个黄球,众生哗然。教师将球一个一个拿出来,最后将盒子倒扣过来,孩子们都笑了。也许有学生的`声音:“上当了!”)
师:上当了?是,这是玩具店老板搞促销的活动,为了吸引大家去商店购物。这个盒子里面装的都是黄球,可能摸出红球吗?
师:(板书:不可能。)从这个盒子里面摸出一个球----(估计学生会说出一定是黄球)
师:(板书:一定。)
3、为什么大家从小组的盒子里能摸到红球,或黄球呢?(再次明白“可能”)
师:你猜盒子里装有什么球? 再打开盒子验证。
4、修改玩具店老板的摸奖盒中的球,再次摸奖游戏体验“可能”
三、联系生活,巩固新知
1、师:不仅是摸球,其实在我们的生活中,同样有些事情是一定会发生的,有些是可能会发生,也有些事情是不可能发生的。课本第105页例2,请大家根据自己的经验判断一下:如果你认为这件事情一定发生就用√来表示;如果你认为这件事情是不可能发生的就用×来表示,如果你认为这件事情可能发生就用○来表示(师板书符号)。
小组讨论后,教师指名汇报,师生共同解决。
(针对最后一题世界上每天都有人出生同学会产生较大争议,出示资料:全世界每秒钟大约出生4.3人,每分钟大约出生259人,每小时大约出生15540人,每天大约出生36.5万人。引导学生对事情不能进行正确判断时,应多查资料再分析判断。)
师:像一定和不可能发生的事都是确定只有一种结果的,我们称之为确定事件(板书:确定),而可能发生的就属于不可确定事件。(板书:不确定)
2、说一说。
同学们,你们也能用“一定”、“不可能”、“可能”来说说发生在我们身边和周围的一些事情吗?小组同学讨论一下,看哪个小组说得准,说得多。
四、实践活动,活用新知
1、 有选择地放球。(每小组有一杯球,内有红球、黄球和蓝球,有3个空袋子。)
出示条件:(小组合作)
(1) 1号袋中摸出的一定是红球。
(2) 2号袋中摸出的不可能是蓝球。
(3) 3号袋中摸出来的可能是黄球。
(4) 每个袋子里装5个球。
师:现在请同学们动手装一装。注意:往口袋里放球,一个人把子口袋撑开,其他的小朋友往里面放球。
(学生装好后)小组长站在前台,让同学们看到袋中的球。师:为什么要这样装?
五、总结评价,深化新知
说说这节课你有什么收获?还有哪些不明白、有疑问的地方?
让学生畅所欲言。
师小结:像这样存在“可能性”的问题,是数学课里面的知识,它包含“一定”、“不可能”和“可能”三种情况,它跟我们的生活是紧密相关的,请同学们回去留意一下,在我们身边还有哪些类似的数学问题。
可能性教案 篇5
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的`。
教学准备:
多媒体,红球3个 黄球3个
教学过程:
一、创设情境,激趣导入。
1.出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1.摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画“√”、涂方块…)
在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)
怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?
教师相***出示“摸球结果记录表”,向学生介绍。
讲解示范:一画“一”表示1次,1个“正”字表示记录5次。
红球
黄球
③明确分工。
谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。
④活动体验。
学生分组实验,教师巡视指导。
(3)归纳。
①各小组交流汇报统计结果,教师用实物投影展示。
② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?
讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的***会和摸到黄球的***会是相等的,也就是摸到红球和黄球的可能性是相等的。
提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)
三、玩中交流,内化交流。
1.抛小正方体。
教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?
如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?
验证。
明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。
在小组内明确分工。
活动体验:学生先分组实验,再统计结果,填写下列表格。
朝上的数字
1、2、3
次数归纳。
各小组汇报统计结果,教师将数据填入下表。
朝上的数字
1、2、3
合计
第一小组
第二小组
第三小组
第四小组
提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?
反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?
讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)
三、拓展深化
谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?
学生各抒己见
谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)
2.完成“想想做做”第2题
先小组讨论,再展示交流,说说想法。
四、总结
提问:通过这节课的学习,你学会了什么?知道了什么?
板书设计:
统计与可能性
3个红球 3个黄球
当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的。
可能性教案 篇6
复习内容:教科书第12册112页-115页整理与反思和练习与实践。
教学目标:
1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。
教学过程
一、复习有关统计的知识和方法。
1、引导学生回忆收集和整理数据的方法。
①广泛地有针对性地收集各种原始数据。
②对数据进行加工,去粗取精,去伪存真。
③数据处理、分类和计算。
④ 按一定的顺序或方式表示出来。
提问:收集数据有哪些方法?(小组讨论,集体交流)
小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。
2、提问:记录数据有哪些方法?举例说明。
(如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)
3、出示填空题。
( )统计图能清楚地表示出数量的增减变化情况
( )统计图可以清楚地表示出各部分同总数的关系。
( )统计图能清楚地直接比较出数量的多少。
小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的.特点,我们要根据数据特点进行选择。
4、指导学生完成第1题
⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)
⑵思考:这两组数据分别制成什么统计图比较合适?为什么?
⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。
⑷提出一些问题让学生看图回答。
二、回忆不同统计图的特点。
(一)出示教材113页的统计图指导观察统计图
1、指名回答,这是什么统计图?
2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?
(①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)
3、独立完成统计表
根据图中的信息将统计表填写完整。
4、小组交流讨论教材中提出的4个问题
引导学生可以根据统计图或统计表进行回答出示条形统计图
(二)指导完成第3题
1、出示第3题统计表,说说从表中可以了解哪些信息?
2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)
3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)
4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。
5、在讨论中完成对两个问题的解答。
(三)指导完成第4题
1、讨论扇形统计图的有关特征?
2、独立完成书上3个问题的解答,然后集体校对
课前思考:
考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。
在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。
教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。
第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的学生总人数,然后再计算。
讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
课前思考:
本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。
课后反思:
指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
可能性教案 篇7
《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。
案例描述:
教学目标:
1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。
2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。
3、激发学生学习数学的兴趣,产生积极的情感体验。
教学重点:
感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。
教、学具:、彩球、塑料袋
教学过程:
一、创设情景,初步感知
1、初步感受事情发生的确定性
(1)用“一定”来描述事情发生的确定性。
师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?
生:想看。
师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?
(学生有的说信,有的说不信)
师:那我们就试试吧。
(师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)
师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?
师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)
把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?
[设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]
(2)用“不可能”来描述事情发生的确定性。
师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?
师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?
[设计意图:在学生已经理解“一定”的基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的`。至此,学生对确定性事件已经形成了初步的认识。]
2、初步感受事情发生的不确定性。
(1)用“可能”来描述事情发生的不确定性。
师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?
引导:用“可能”来描述事情发生的不确定性。
(2)加深对“可能”的理解。
请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。
[设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]
二、互动交流,深层体验
1、“生本”对话,描述可能性。
师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?
[设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]
2、揭示课题
3、学习例2,判断可能性。
出示例2,生独立判断,交流汇报。
[设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的能力。]
三、联系生活,应用拓展
1、“生生”对话。
小组内活动:
①往袋中装球,用“一定、不可能、可能”说一句话。
②提出一个要求,根据要求来装球。
小组间活动:
小组派代表,向其它小组的同学提问题,当场解决。
[设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]
2、辨一辨。(书本习题)
3、涂一涂。(书本习题)
4、用“一定、可能、不可能”举一举生活中的例子。
[设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]
四、课堂总结,升华情感
师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?
教学反思:
1、 较好地整好教学资源。
这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。
2、 灵活地组织数学活动。
“数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。
3、 精心设计教学对话。
每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。
(1) 师生对话
在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。
(2) 生本对话
教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。
(3) 生生对话
在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。
反思不足之处:
在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。
可能性教案 篇8
3.1 认识事件的可能性(教参)
【教材分析】
(一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.
(二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现
象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.
【教学目标】
1.通过实例进一步体验事件发生的可能性的意义.
2.了解必然事件、不确定事件、不可能事件的概念.
3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.
4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.
【教学重点、难点】
1.事件发生的可能性的`意义,包括按事件发生的可能性对事件分类.
2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.
(基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的结合,体现了新教材,新理念.)
【教学过程】
一、激趣、设疑、引题
同学们做过抛掷硬币的游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?
做完游戏后,提出问题:
(1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?
(2)在刚才的游戏中,可能正反面同时朝上吗?
(3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?
事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.
引出课题:认识事件的可能性.
(利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)
二、观察、思考、巩固
(一)观察和思考:你能举出几个生活中必然发生,不可能发生,
可能发生的例子吗?(请大家发言)
不仅在现实生活中有很多例子,而且在我们所学的各学
科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”
“愚公移山”这三个成语故事和天气预报的动画)
同时给出必然事件、不可能事件和不确定事件的概念:
在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);
在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);
在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.
(这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)
(二)巩固、检测、反馈(利用题组区分概念):
在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.
1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)
问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?
(1)打开电视机,它正在播广告;
(2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;
(3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;
(4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;
(5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;
(6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;
(7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.
2.头脑风暴.
例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。
(1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?
(2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?
(3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?
(列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)
不可能事件 可能事件 必然事件
|a|的值
a的倒数
若a+b=0(a,b的之间关系)
3.个性空间(设置一组稍难题,对所学知识进一步巩固).
问题1:列表造句:
问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?
(2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?
(在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)
(三)完成课本课内练习.
三、概括、梳理、升华
1.采用谈话式小结.教师提问:
(1)你在这节课的学习中,最大收获是什么?
(2)你对哪一点最感兴趣?
(3)你受到哪些启迪?
(4)你还有什么新的发现?
(这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)
2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.
四、布置作业
1、课本作业题
2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?