平行四边形教案合集五篇
作为一名教学工作者,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编帮大家整理的平行四边形教案5篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
学习目标
1、 理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等。
2、认识平行四边形的底和高,会画出平行四边形的高;
3、培养学生的实践能力,观察能力和分析能力。
学习重点:
掌握平行四边形的特征。
学习难点:
会画平行四边形的高。
学习准备:
课件、长方形框架、平行四边形纸、钉板
导学过程:
一、魔术表演:
教师拿出一个用四根木条钉成的长方形,两手捏住长方形的两个对角,向相反方向拉,观察两组对边有什么变化?拉成了什么图形?为什么会发生这样的变化?
二、揭示课题和目标。
三、体验平行四边形的特性
1、揭示平行四边形的.不稳定性;
2、你能举出日常生活中应用平行四边形容易变形这一性质的例子吗?
3、图片展示。
四、探究平行四边形的特征
(一)观察图形,合理猜想
请学生拿出手里的平行四边形纸,让学生大胆猜平行四边形的特征。学生发言。
(二)动手操作,验证猜想
1、操作实践。教师提示用三角板或者直尺验证。学生小组验证。
2、汇报交流验证的过程。
预设:1、测量后发现对边相等
2、延长对边不相交,所以对边平行
3、用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。
3、归纳特征。
师:现在请你用一句话概括平行四边形的特征。生用自己的语言描述。
教师帮助归纳并板书:两组对边分别平行且相等
4、应用做教材67页1题。
五、动手操作,认识“底和高”:
1、观察画出的垂直线段,告诉学生:
像这样从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫平行四边形的底。
2、请学生猜猜,平行四边形有多少条高?
3、揭示平行四边形高的画法
4、练习:画出四个平行四边形的高。
五、智慧屋(练习题)
六、全课总结:通过本节课的学习,你知道了平行四边形的哪些东西呢?
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的.关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学目标 知识技能目标 1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法. 2.理解平行四 边形的这两种判定方法,并学会简单运用. 过程与方法目标 1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识. 2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力. 情感态度价值观目标 通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情. 教学重点: 平行四边形判定方法的探究、运用. 教学难点: 对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用. 教学过程 第一环节 复习引入: ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.) 问题1(多媒体展 示问题) 1.平行四边形的定义是什么?它有什么作用? 2.平 行四边形还有哪些性质? 问题2 有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗? 第二环节 探索活动(12分钟,学生动手探究,小组合作) 活动1: 工具:两根长度相等的笔, 两条平行线(可利用横格线). 动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗? 思考1.1:你能说明你所摆出的四边形是平行四边形吗? 思考1.2:以上活动事实,能用字语言表达吗? 目的: 得出平行四边形 的'一个性质:一组对边平行且相等的四边形是平行四边形. 活动2 工具:两根不同长度的细纸条. 动手:能否用这两根细纸条在平面上 摆出平行四边形? 思考2.1:你能说明你们摆出的四边形是平行四边形吗? 思考2.2:以上活动事实,能用字语言表达吗? 目的: 得出平行四边形的性质:对角线互相平分的四边形是平行四边形 第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨) 随堂练习: 1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF. (1)OA与OC,OB与OD相等吗? (2)四边形BFDE是平行四边形吗? (3)若点E,F在OA,OC的中点上,你能解决上述问题吗? 2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出? (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法) 学生想到的画法有: (1)分别过A,C作BC,BA的平行线,两平行线相交于D; (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD; (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD. 第四环节 小结:(4分钟,学生回答问题) 师生共同小结,主要围绕下列几个问题: (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发? (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法. 第五环节 布置 作业: B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题 A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗? ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗? 教学内容:人教版第九册 64 – 67页 说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。 教学重点:平行四边形面积的推导过程。 本课采用的教法:自学法 、 转化方法、小组合作法、实验法。 学法:1、自主学习法 2、小组合作探究学习法。 教学程序: 一、创设问题情景, 为新课作铺垫。 请同学们帮李师傅的一个忙, 求出下面的面积,你是怎样想的?3厘米 5厘米 二、突出学生主体地位,发展学生的创新思维。 首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么? 有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的`长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想 三、小组合作,培养学生的合作精神。 小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高 学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间) 学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。 四例题独立完成,体现学生自己解决问题的能力。 例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。 板书设计: 长方形面积==长乘宽 平行四边形面积=底乘高 s= a h 一、内容和内容解析 1.内容 平行四边形对角线的性质. 2.内容解析 这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据. 教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算. 基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用. 二、目标和目标解析 1.目标 (1)探究并掌握平行四边形对角线互相平分的性质. (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题. 2.目标解析 达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想. 达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证. 三、教学问题诊断分析 本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决. 基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算. 四、教学过程设计 引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质. 1. 引入要素 探究性质 问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程? 师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答. 设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备. 问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗? 师生活动:启发学生去发现并猜想:平行四边形的`对角线互相平分. 你能证明上述猜想吗? 教师操作投影仪,提出下面问题: 图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证. 学生合作学习,交流自己的思路,并讨论不同的验证思路. 教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB, △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明. 师生归纳整理: 定理:平行四边形的对角线互相平分. 我们证明了平行四边形具有以下性质: (1)平行四边形的对边相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分. 设计意图:应用三角形全等的知识,猜想并验证所要学习的内容. 2.例题解析 应用所学 问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积. 师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程. 变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量? 设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值. 3.课堂练习,巩固深化 (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________. (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少? 设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力. 4.反思与小结 (1)我们学习了平行四边形的哪些性质? (2)结合本节的学习,谈谈研究平行四边形性质的思想方法. (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题? 5.布置作业 教科书P49页习题18.1 第3题; 教科书第51页第14题. 【平行四边形教案】相关文章: 平行四边形的面积教案03-17 平行四边形的面积教案03-31 《平行四边形的面积》教案01-02 平行四边形面积教案02-09 认识平行四边形教案03-05 精选平行四边形教案3篇05-16 平行四边形教案3篇05-16 平行四边形教案9篇05-19 《平行四边形面积的计算》教案09-14 数学《平行四边形的面积》教案02-14平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5