二元一次方程教案

时间:2024-07-27 08:42:26 教案 投诉 投稿

二元一次方程教案

  作为一无名无私奉献的教育工作者,时常需要编写教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?下面是小编收集整理的二元一次方程教案,欢迎阅读与收藏。

二元一次方程教案

二元一次方程教案1

  教学目标

  1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

  2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;

  3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.

  教学难点

  借助列表分问题中所蕴含的数量关系。

  知识重点

  用列表的方式分析题目中的各个量的关系。

  教学过程

  (师生活动)设计理念

  创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.

  电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的.用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?

  学生独立思考,容易解答.以一道生活热点问题引入,具有现实意义.激发学生学习兴趣,同时培养学生节约、合理用电的意识.

  理解题意是关健.通过该题,旨在培养学生的读题能力和收集信息能力.

  探索分析

  解决问题(出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.公路运价为1.5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?

  (图见教材115页,图8.3-2)

  学生自主探索、合作交流.

  设问1.如何设未知数?

  销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.

  设问2.如何确定题中数量关系?

  列表分析

  产品x吨

  原料y吨

  合计

  公路运费(元)

  铁路运费(元)

  价值(元)

  由上表可列方程组

  解这个方程组,得

  因为毛利润-销售款-原料费-运输费

  所以这批产品的销售款比原料费与运输的和多1887800元.

  引导学生讨论以上列方程组解决实际问题的

  学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情.

  通过讨论让学生认识到合理设定未知数的愈义.

  借助表格辅助分析题中较复杂的数量关系,不失为一种好方法.

  课堂练习

  反馈调控某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司

  购到这种水果140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:

  方案一:将这批水果全部进行粗加工;

  方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;

  方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成.

  你认为选择哪种方案获利最多?为什么?

  学生合作讨论完成

  选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用.

  小结与作业

  小结提高1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?

  2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程.

  学生思考、讨论、整理.

  这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系.

  让学生结合自己的解题过

  程概括整理,帮助理解,培养模

  型化的思想和应用数学于现实

  生活的意识.

  布置作业16、必做题:教科书116页习题8.3第2、6题。

  17、选做题:教科书117页习题8.3第9题。

  18、备19、选题:

  (1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.

  甲种货车(辆)乙种货车(辆)总量(吨)

  第1次

  4528.5

  第2次

  3627

  这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?

  (2)某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习.学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解.在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想.

  同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识.

二元一次方程教案2

  一、学情分析:

  学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

  二、 学习目标:

  本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

  1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

  2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

  3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.

  教学重点

  二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

  教学难点

  通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系

  1. 某水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.

  (1) 请找出自变量和因变量

  (2) 你能列出X,Y的关系式吗?

  (3) X,Y的取值范围是什么?

  (4) 在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围).

  2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

  (2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?

  (3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?

  (4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?

  x+y=5与 y=?x?5表示的关系相同

  一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.

  目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

  第二环节 自主探索方程组与一次函数两种数学模型之间的关系

  探究方程与函数的相互转化

  1.两个一次函数图象的交点坐标是相应的二元

  一次方程组的解

  (1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

  (2)两个函数的交点坐标适合哪个方程?

  ?x?y?5(3).解方程组?验证一下你的发现。 2x?y?1?

  练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

  2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。

  ?x?y?2(1)解?

  ?2x?y?5(2)以方程x+y=2

  (3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

  (5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

  由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.

  练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

  第三环节模型应用

  1.某公司要印制产品宣传材料.

  1500元制版费. 甲印刷厂:每份材料收1元印制费, 另收 乙印刷厂:每份材料收2.5元印制费, 不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

  印刷厂的费用。

  (1) 请分别表示出两个印刷厂费用与X的关系式。

  (2) 在同一直角坐标系中画出函数的'图象。

  (3) 如何根据印刷材料的份数选择印刷厂比较合算?

  第四环节 模型特例

  想一想

  内容:在同一直角坐标系内, 一次函数y = x + 1 和 y = x - 2 的图象(教材

  ?x?y??1124页图5-2)有怎样的位置关系?方程组?解的情况如何?你发现了什x?y?2?

  么?

  二元一次方程的解和相应的两条直线的关系2.

  (1)观察发现直线平行无交点;

  (2)小组研究计算发现方程组无解;

  (3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

  (4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

  目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.

  进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

  第五环节 课堂小结

  内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

  1.二元一次方程和一次函数的图像的关系;

  以二元一次方程的解为坐标的点都在相应的函数图像上;

  一次函数图像上的点的坐标都适合相应的二元一次方程.

  2.方程组和对应的两条直线的关系:

  方程组的解是对应的两条直线的交点坐标;

  两条直线的交点坐标是对应的方程组的解;

  第六环节 作业布置

  习题5.7

二元一次方程教案3

  一、学生知识状况分析

  学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。

  学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的合作学习经验,具备了一定的合作与交流的能力。

  二、教学任务分析

  ● 地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:

  1.归纳出用二元一次方程组解决实际问题的一般步骤.

  2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型.

  3.在解决问题过程中,学会借助图表分析问题,感受化归思想。

  4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的'意志和勇气.

  本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。

  ●教学准备

  FLAH播放器;若FLASH不能播放,请按绝对路径重新插入后播放.

  三、教学过程分析

  本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。

  第一环节 知识回顾

  1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.

  2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.

  3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.

  4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:

  1000a+b.

  设计意图:通过复习,为本节课的继续学习做好铺垫。

  实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。

  第二环节 情境引入

  1.Flash动画,情景展示。

  小明星期天开车出去兜风,他在公路上匀速行驶,根据动画中的情景,你能确定他在12:00看到的里程碑上的数吗?

  12:00是一个两位数,它的两个数字之和为7;

  13:00十位与个位数字与12:00所看到的正好颠倒了;

  14:00比12:00时看到的两位数中间多了个0.

  5.5应用二元一次方程组——里程碑上的数同步练习含答案

  小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9. ”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这 个两 位数恰 好也比原来的两位数大9.”

  那么,你能回答以下问题吗?

  (1)他们取 出的两张卡片上的数 字分别是几?

  (2)第一次,他们拼出的两位数是多少?

  (3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!

二元一次方程教案4

  教学目标

  1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

  2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。

  3.引导学生关注身边的数学,渗透将来未知转达化为已知的'辩证思想。

  教学重点

  1.列二元一次方程组解简单问题。

  2.彻底理解题意

  教学难点

  找等量关系列二元一次方程组。

  教学过程

  一、情境引入。

  小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

  二、建立模型。

  1.怎样设未知数?

  2.找本题等量关系?从哪句话中找到的?

  3.列方程组。

  4.解方程组。

  5.检验写答案。

  思考:怎样用一元一次方程求解?

  比较用一元一次方程求解,用二元一次方程组求解谁更容易?

  三、练习。

  1.根据问题建立二元一次方程组。

  (1)甲、乙两数和是40差是6,求这两数。

  (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

  (3)已知关于求x、y的方程,

  是二元一次方程。求a、b的值。

  2.P38练习第1题。

  四、小结。

  小组讨论:列二元一次方程组解应用题有哪些基本步骤?

  五、作业。

  P42。习题2.3A组第1题。

  后记:

  2.3二元一次方程组的应用(2)

二元一次方程教案5

  学习目标

  1、认识并会判断二元一次方程和二元一次方程组。

  2、了解二元一次方程和二元一次方程组的解并会检验一对数值是不是二元一次方程(组)的解。

  重点难点

  重点:二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解。

  难点:求二元一次方程的正整数解。

  学前准备

  1、知识回顾:

  (1)方程的概念;

  (2)一元一次方程的`概念;

  (3)什么是方程的解?

  (4)一元一次方程的解如何表示?

  2、合作学习:

  ①小红到邮局寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?

  如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

  ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?

二元一次方程教案6

  教学目标

  1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;

  2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.

  教学难点弄懂二元一次方程组解的含义。

  知识重点二元一次方程、二元一次方程组及其解的含义。

  教学过程(师生活动)

  设计理念

  创设情境

  导入课题幻灯:古老的“鸡兔同笼问题”

  “今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”

  师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?

  学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.

  方案一:算术方法

  把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,

  进而鸡有35-12=23只.

  或类似的也可以先求鸡的数量.

  35×4-94=46,46÷2=23

  方案二:列一元一次方程解

  设有x只鸡,则有(35-x)只兔.根据题意,得

  2x十4(35-x)=94.

  (解方程略)

  教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情

  能用方案本来解的学生算术功底比较好,应给予高度赞赏.

  方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。

  分析问题(一)讨论二元一次方程、二元一次方程组的概念

  师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)

  方案三:设有x只鸡,y只兔,依题意得

  x+y=35,①

  2x+4y=94.②

  针对学生列出的这两个方程,提出如下问题:

  (1)、你能给这两个方程起个名字吗?

  (2)为什么叫二元一次方程呢?

  (3)什么样的方程叫二元一次方程呢?

  结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.

  师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?

  定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.

  (二)讨论二元一次方程、二元一次方程组的解的概念

  探究活动:满足x+y=35的值有哪些?请填入表中:

  教师启发:

  (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?

  (2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?

  (3)它与一元一次方程的解有什么区别?

  定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为

  师:那么什么是二元一次方程组的解呢?

  学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.

  定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.

  比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做

  的解记为:

  注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.

  议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?

  引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念

  通过探究活动得出结论:

  1、二元一次方程的解是成对出现的;2、二元一次方程的解有无

  数多个.这与一元一次方程有显

  著的区别.

  通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.

  巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是()

  ABCD

  解法分析:

  将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.

  变式:其中是二元一次方程组解是()

  解法分析:

  在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.

  例2(教材102页练习)

  解答过程略

  本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.

  目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概

  小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.

  本节课学习了哪些内容?你有哪些收获?

  (什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。

  布置作业1、必做题:教科书102页习题8.1第1、2题.

  2、选做题:教科书102页习题8.1第3题.

  3、备选题:

  (1)根据下列语句,列出二元一次方程:

  ①甲数的.一半与乙数的的和为11

  ②甲数和乙数的2倍的差为17

  (2)方程x+2y=7在自然数范围内的解()

  A有无数个B有一个C有两个D有三个

  (3)若mx+y=1是关于x,y的二元一次方程,那么m

  的值应是()

  A.m≠OB.m=0C.m是正有理数D.m是负有理数

  (4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?

  不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.

  本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。

二元一次方程教案7

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的.系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)

二元一次方程教案8

  教学目的

  1.使学生了解二元一次方程,二元一次方程组的概念。

  2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

  3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

  重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

  难点;了解二元一次方程组的解的含义。

  导学提纲:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

  2.阅读教材问题1思考下列问题

  ⑴.能否用我们已经学过的知识来解决这个问题?

  用算术法解答

  用一元一次方程解答

  解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

  ⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

  ⑶.对于方程x十y=73x+y=17请思考下列问题

  ①它们是一元一次方程吗?

  ②这两个方程有没有共同特点/若有,有河共同特点?

  ③类比一元一次方程的概念,总结二元一次方程的概念

  3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

  注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

  4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

  注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

  (2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

  5.思考讨论在方程组①②③④

  ⑤⑥中,属于二元一次方程组的有

  达标检测:

  1.根据下列语句,分别设适当的.未知数,列出二元一次方程或方程组:

  (1)甲数的比乙数的2倍少7:_____________________________;

  (2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

  (3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

  2.下列方程是二元一次方程的是()

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程组的是()

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

  y=-3

  5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

二元一次方程教案9

  教学目标知识技能

  1、会根据问题情境及条件列出分段计费及盈不足等问题的二元一次方程组,并能检验解的合理性;

  2.通过解决实际问题进一步体会方程建模的过程和作用.

  数学思考经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

  问题解决让学生进一步经历和体验列方程组解决实际问题的过程,培养学生的数学应用能力.

  情感态度通过对问题的解决,进一步认识数学与现实世界的密切联系,培养学生必要的经济意识,增强他们节约成本、有效合理利用资源的意识,培养学生的数学应用意识,提高学习数学的趣味性、现实性、科学性.

  教学重点抽象出数学模型,引导学生参与讨论和探究问题.

  教学难点将实际问题转化成二元一次方程组的数学模型.

  授课类型新授课课时

  教具多媒体课件

  教学活动

  教学步骤师生活动设计意图

  活动一:创设情境导入新课

  【课堂引入】1.某旅行社在黄金旅游期间为一个旅游团安排住宿,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住了4人,且空两间宿舍,那么该旅游团有多少人?有多少间宿舍?图1-3-72.上节课我们学习了列二元一次方程组解应用题的一般步骤,并学习了行程问题,百分比问题的解决思路,这节课我们一起来学习分段计费、盈不足问题的解决方法.利用同学们熟悉的生活中的问题去激发学生学习本节课的兴趣,导入课题.

  活动二:实践探究交流新知

  【探究1】分段计费问题某城市规定:出租车起步价所包含的路程为0~3 km,超过3 km的部分按每千米另收费.甲说“我乘这种出租车走了11 km,付了17元.”乙说:“我乘这种出租车走了23 km,付了35元.”请你算一算:出租车的起步价是多少元?超过3 km后,每千米的车费是多少元?阅读后思考回答:问题1:由甲乘车付费可以得到一个什么样的等量关系?由乙乘车付费又可以得到一个什么样的等量关系?问题2:在这两个等量关系中,未知量有几个?各小组成员共同讨论,探讨已知与未知,并探讨设元的方法.问题3:你能通过设元列出二元一次方程组吗?试试看.解:设出租车的起步价是x元,超过3 km后每千米收费y元.根据等量关系,得解得答:这种出租车的起步价是5元,超过3 km后每千米收费1.5元.归纳总结:分段计费的常见等量关系是:总费用=各分段费用之和.

  【探究2】盈不足问题把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?问题1:“若每人分3本,则剩余20本”,你怎样理解这句话?如果设这个班有x名学生,根据这句话,你能用含x的代数式表示书本数吗?同样地,“若每人分4本,则还缺25本”又如何理解?你能用含x的代数式表示书本数吗?问题2:你能用列一元一次方程求解这道题吗?试试看.问题3:如果需要列二元一次方程组求解本题,你认为应该如何设元?如何列方程组?小组内合作,共同交流,提出各自的解法,然后讨论.归纳总结:盈不足问题常见的处理方法是:用一个未知数的代数式表示另一个量,再根据同一个量的两种不同表示方法,列一元一次方程求解;也可直接列二元一次方程组求解.解法一:设这个班有x名学生.根据题意,得3x+20=4x-25.解得x=45.答:这个班共有45名学生.解法二:设这个班有x名学生,图书一共有y本.根据题意,得解得答:这个班共有45名学生.通过合作探究,使学生初步学会设计适当的图表,帮助理清题目中的数量关系,从而提高学生分析问题和解决问题的.能力.在实际问题的解决过程中,进一步提高学生解方程组的技能.

  活动三:开放训练体现应用

  【应用举例】例1用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设这根绳子长为x尺,环绕油桶一周需y尺.由题意,得解得答:这根绳子长为25尺,环绕油桶一周需7尺.变式训练1.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.则敬老院有多少位老人?2.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个3.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每户每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每户每月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家20xx年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时.(2)若6月份小张家预计用电130千瓦时,请预计小张家6月份应上缴的电费.解:(1)设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时.根据题意,得解得答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130-80)×1=98(元).答:预计小张家6月份上缴的电费为98元.通过应用举例,及时反馈学生的学习情况,并及时地查缺补漏,进一步提升教学效果.进一步体会此类问题的解决方法,并能灵活解题.

  解:(2)由(1)可列方程组解得3+6=9(千米).答:他家到海滨9千米.除巩固课堂所学知识外,也给学生创造了一个知识迁移及拔高的机会,使学生各抒己见,并培养学生分析问题、解决问题的能力.

  活动四:课堂总结反思

  【当堂训练】七年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班购买一筐桃,每人分6个,则少6个,每人分5个,则多5个,则班级人数与桃数各是(B)A.22,120 B.11,60 C.10,54 D.8,423.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”.诗句中谈到的鸦为__20__只,树为__5__棵.练习题的设置一方面加强学生对知识的掌握,从而提高对知识的运用能力;另一方面可以查缺补漏,为以后教师的教和学生的学指明方向.

  【课堂总结】布置作业:1.教材P18练习T1,T2.2.教材P18习题1.3A组T3,B组T7. 布置作业,专题突破.

  活动四:课堂总结反思

  【教学反思】

  ①[授课流程反思]从生活中常见的事例入手,引起学生的注意,同时也为学生今后的学习做铺垫.

  ②[讲授效果反思]通过设问的形式,引导学生理解题意,帮助学生分清已知和未知,掌握本课时内容,突破难点.

  ③[师生互动反思]课堂上教师真正发挥学生的主体地位,特别是遇到较难解决的问题时,可让同学们分组探究、归纳总结,同时,加强学生之间的相互评价.

  ④[习题反思]好题题号____________________________________________错题题号____________________________________________

二元一次方程教案10

  二元一次方程组是从实际生活中抽象出来的数学模型,它是解决实际问题的有效途径,更是今后学习的重要基础.它是在一元一次方程的基础上来进一步研究末知量之问的关系的,教材通过实例引入方程组的概念,同时引入方程组解的概念,并探索二元一次方程组的解法,具体研究二元一次方程组的实际应用.

  本章学习重难点

  【本章重点】会解二元一次方程组,能够根据具体问题中的数量关系列出方程组.

  【本章难点】列方程组解应用性的实际问题.

  【学习本章应注意的问题】

  在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题.

  中考透视

  在考查基础知识、基本能力的题目中,单独知识点考查类题目及多知识点综合考查类题目经常出现,在实际应用题及开放题中大量出现.所以在学习本章内容的过程中一定要结合其他相应的知识与方法,本章是中考的重要考点之一,围绕简单的'二元一次方程组的解法命题,能根据具体问题的数量关系列出二元一次方程组,体会方程是描述现实世界的一个有效模型,并根据具体问题的实际意义用观察、体验等手段检验结果是否合理.考试题型以选择题、填空题、应用题、开放题以及综合题为主,高、中、低档难度的题目均有出现,占4~7分.

  知识网络结构图

  专题总结及应用

  一、知识性专题

  专题1 运用某些概念列方程求解

  【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题

  例1 若 =0,是关于x,y的二元一次方程,则a=_______,b=_______.

  分析 依题意,得 解得

  答案:

  【解题策略】准确地掌握二元一次方程的定义是解此题的关键.

  专题2 列方程组解决实际问题

  【专题解读】方程组是描述现实世界的有效数学模型,在日常生活、工农业生产、城市规划及国防领域都有广泛的应用,列二元一次方程组的关键是寻找相等关系,寻找相等关系应以下两方面入手;(1)仔细审题,寻找关键词语;(2)采用画图、列表等方法挖掘相等关系.

  例2 一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干后离去,再由乙完成,实际上甲只做了计划时间的一半因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?

  分析 由甲、乙单独完成所需的时间可以看出甲、乙两人的工作效率,设总工作量为1,则甲每天完成 ,乙每天完成 .

  解:设原计划甲做x天,乙做y天,则有

  解这个方程组,得

  答:原计划甲做8天,乙做6天.

  【解题策略】若总工作量没有具体给出,可以设总工作量为单位1,然后由时间算出工作效率,最后利用工作量=工作效率工作时间列出方程.

  二、规律方法专题

  专题3 反复运用加减法解方程组

  【专题解读】反复运用加减法可使系数较大的方程组转化成系数较小的方程组,达到简化计算的目的.

  例3 解方程组

  分析 当方程组中未知数的系数和常数项较大时,注意观察其特点,不要盲目地利用加减法或代入法进行消元,可利用反复相加或相减得到系数较小的方程组,再求解.

  解:由①-②,得x-y=1,③

  由①+②,得x+y=5,④

  将③④联立,得

  解得 即原方程组的解为

  【解题策略】此方程组属于 型,其中| - |=k|a-b|, + =m|a+b|,k,m为整数.因此这样的方程组通过相加和相减可得到 型方程组,显然后一个方程组容易求解.

  专题4 整体代入法解方程组

  【专题解读】结合方程组的形式加以分析,对于用一般代入法和加减法求解比较繁琐的方程组,灵活灵用整体代入法解题更加简单.

  例4 解方程组

  分析 此方程组中,每个方程都缺少一个未知数,且所缺少的未知数又都不相同,每个未知数的系数都是1,这样的方程组若一一消元很麻烦,可考虑整体相加、整体代入的方法.

  解:①+②+③+④,得3(x+y+z+m)=51,

  即x+y+z+m=17,⑤

  ⑤-①,得m=9,⑤-②,得z=5.

  ⑤-③,得y=3,⑤-④,得x=0.

  所以原方程组的解为

  专题5 巧解连比型多元方程组

  【专题解读】连比型多元方程组通常采用设辅助未知数的方法来求解.

  例5 解方程组

  解:设 ,

  则x+y=2k,t+x=3k,y+t=4k,

  三式相加,得x+y+t= ,

  将x+y+t= 代入②,得 =27,

  所以k=6,所以

  ②-⑤,得x=3,②-④,得y=9,②-③,得t=15.

  所以原方程组的解为

  三、思想方法专题

  专题6 转化思想

  【专题解读】对于直接解答有难度或较陌生的题型,可以根据条件,将其转化成易于解答或比较常见的题型.

  例6 二元一次方程x+y=7的非负整数解有 ( )

  A.6个

  B.7个

  C.8个

  D.无数个

  分析 将原方程化为y=7-x,因为是非负整数解,所以x只能取0,1,2,3,4,5,6,7,与之对应的y为7,6,5,4,3,2,1,0,所以共有8个非负整数解.故选C.

  【解题策略】对二元一次方程求解时,往往需要用含有一个未知数的代数式表示出另一个未知数,从而将求方程的解的问题转化为求代数式的值的问题.

  专题7 消元思想

  【专题解读】 将未知数的个数由多化少,逐一解决的思想即为消元思想.

  例7 解方程组

  分析 解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是消元,把三元变为二元,再化二元为一元,进而求解.

  解法1:由③得z=2x+2y-3.④

  把④代入①,得3x+4y+2x+2y-3=14,

  即5x+6y=17.⑤

  把④代入②,得x+5y+2(2x+2y-3)=17,

  即5x+9y=23.⑥

  由⑤⑥组成二元一次方程组 解得

  把x=1,y=2代入④,得z=3.

  所以原方程组的解为

  解法2:由①+③,得5x+6y=17.⑦

  由②+③2,得5x+9y=23.⑧

  同解法1可求得原方程组的解为

  解法3:由②+③-①,得3y=6,所以y=2.

  把y=2分别代入①和③,得 解得

  所以原方程组的解为

  【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的

  是将多元的方程组逐步转化为一元的方程,即三元 二元 一元.

二元一次方程教案11

  教学建议

  一、重点、难点分析

  本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

  解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

  二、知识结构

  三、教法建议

  1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

  这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

  2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

  3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

  一、素质教育目标

  (一)知识教学点

  1.掌握用代入法解二元一次方程组的步骤.

  2.熟练运用代入法解简单的二元一次方程组.

  (二)能力训练点

  1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

  2.训练学生的运算技巧,养成检验的习惯.

  (三)德育渗透点

  消元,化未知为已知的数学思想.

  (四)美育渗透点

  通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

  二、学法引导

  1.教学方法:引导发现法、练习法,尝试指导法.

  2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

  三、重点、难点、疑点及解决办法

  (-)重点

  使学生会用代入法解二元一次方程组.

  (二)难点

  灵活运用代入法的技巧.

  (三)疑点

  如何“消元”,把“二元”转化为“一元”.

  (四)解决办法

  一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

  2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

  3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

  七、教学步骤

  (-)明确目标

  本节课我们将学习用代入法求二元一次方程组的解.

  (二)整体感知

  从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

  (三)教学步骤

  1.创设情境,复习导入

  (1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

  (2)选择题:

  二元一次方程组 的解是

  A. B. C. D.

  第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

  通过上节课的.学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

  这样导入,可以激发学生的求知欲.

  2.探索新知,讲授新课

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

  设买了香蕉 千克,那么苹果买了 千克,根据题意,得

  设买了香蕉 千克,买了苹果 千克,得

  上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

  解:由①得: ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

  上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

  学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

  例1 解方程组

  (1)观察上面的方程组,应该如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

  (3)求出 后代入哪个方程中求 比较简单?(①)

  学生活动:依次回答问题后,教师板书

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何检验得到的结果是否正确?

  学生活动:口答检验.

  教师:要把所得结果分别代入原方程组的每一个方程中.

  给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

  例2 解方程组

  要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

  学生活动:尝试完成例2.

  教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

  解:由②,得 ③

  把③代入①,得

  ∴

  ∴

  把 代入③,得

  ∴

  ∴

  检验后,师生共同讨论:

  (1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

  (2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

  学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

  教师板书:

  (1)变形( )

  (2)代入消元( )

  (3)解一元一次方程得( )

  (4)把 代入 求解

  练习:P13 1.(1)(2);P14 2.(1)(2).

  3.变式训练,培养能力

  ①由 可以得到用 表示 .

  ②在 中,当 时, ;当 时, ,则 ; .

  ③选择:若 是方程组 的解,则( )

  A. B. C. D.

  (四)总结、扩展

  1.解二元一次方程组的思想:

  2.用代入法解二元一次方程组的步骤.

  3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

  通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

  八、布置作业

  (一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)选做题:P15 B组1.

二元一次方程教案12

  一、教材分析

  本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

  二、学情分析

  学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

  三、目标分析

  1.教学目标

  知识与技能目标

  (1) 初步理解二元一次方程和一次函数的关系;

  (2) 掌握二元一次方程组和对应的两条直线之间的关系;

  (3) 掌握二元一次方程组的图像解法.

  过程与方法目标

  (1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

  (2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

  (3) 情感与态度目标

  (1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

  (2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

  2.教学重点

  (1)二元一次方程和一次函数的关系;

  (2)二元一次方程组和对应的两条直线的关系.

  3.教学难点

  数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

  第一环节: 设置问题情境,启发引导

  内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

  2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

  3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

  4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

  由此得到本节课的第一个知识点:

  二元一次方程和一次函数的图像有如下关系:

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

  意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

  效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

  第二环节 自主探索方程组的解与图像之间的.关系

  内容:1.解方程组

  2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

  3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

  (1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

  (2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

  (3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

  注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

  意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

  效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

  第三环节 典型例题

  探究方程与函数的相互转化

  内容:例1 用作图像的方法解方程组

  例2 如图,直线 与 的交点坐标是 .

  意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

  效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

  第四环节 反馈练习

  内容:1.已知一次函数 与 的图像的交点为 ,则 .

  2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).

  (A)4 (B)5 (C)6 (D)7

  3.求两条直线 与 和 轴所围成的三角形面积.

  4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

  意图:4个练习,意在及时检测学生对本节知识的掌握情况.

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

  第五环节 课堂小结

  内容:以问题串的形式,要求学生自主总结有关知识、方法:

  1.二元一次方程和一次函数的图像的关系;

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

  2.方程组和对应的两条直线的关系:

  (1) 方程组的解是对应的两条直线的交点坐标;

  (2) 两条直线的交点坐标是对应的方程组的解;

  3.解二元一次方程组的方法有3种:

  (1)代入消元法;

  (2)加减消元法;

  (3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

  意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

  第六环节 作业布置

  习题7.7

  附: 板书设计

  六、教学反思

  本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

二元一次方程教案13

  教学建议

  一、知识结构

  二、重点难点分析

  本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、

  (1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、

  (2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、

  (3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、

  (4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、

  三、教法建议

  1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、

  2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、

  3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1、理解同位角、内错角、同旁内角的概念、

  2、结合图形识别同位角、内错角、同旁内角、

  (二)能力训练点

  1、通过变式图形的识图训练,培养学生的识图能力、

  2、通过例题口答“为什么”,培养学生的推理能力、

  (三)德育渗透点

  从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、

  (四)美育渗透点

  通过“三线八角”基本图形,使学生认识几何图形的位置美、

  二、学法引导

  1、教师教法:尝试指导,讨论评价、变式练习、回授、

  2、学生学法:主动思考,相互研讨,自我归纳、

  三、重点、难点、疑点及解决办法

  (一)生点

  同位角、内错角、同旁内角的概念、

  (二)难点

  在较复杂的图形中辨认同位角、内错角、同旁内角、

  (三)疑点

  正确理解新概念、

  (四)解决办法

  引导学生讨论归纳三类角的特征,并以练习加以巩固、

  四、课时安排

  1课时

  一、教具学具准备

  投影仪、三角板、自制胶片、

  六、师生互动活动设计

  1、通过一组练习创设情境,复习基础知识,引入新课、

  2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、

  3、通过师生互答完成课堂小结、

  七、教学步骤

  (一)明确目标

  使学生掌握“三线八角”,并能在图形中进行辨识、

  (二)整体感知

  以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、

  (三)教学过程

  创设情境,复习导入

  回答下列问题:

  1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?

  2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?

  3、如图,三条直线 AB 、CD 、EF 交于一点 O ,则图中有几对对顶角,有几对邻补角?

  4、如图,三条直线 AB 、CD 、EF 两两相交,则图中有几对对项角,有几对邻补角?

  5、三条直线相交除上述两种情况外,还有其他相交的情形吗?

  学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 CD ,使 CD 与EF相交于某一点(如图),直线 AB 、CD 都与EF相交或者说两条直线 AB 、CD 被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、

  【板书】 2.3同位角、内错角、同旁内角

  【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的辩证关系、

  尝试指导,学习新知

  1、学生自己尝试学习,阅读课本第67页例题前的内容、

  2、设计以下问题,帮助学生正确理解概念、

  (1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?

  (2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?

  (3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?

  (4)同位角和同分内角在位置上有什么相同点和不同点?

  内错角和同旁内角在位置上有什么相同点和不同点?

  (5)这三类角的`共同特征是什么?

  3、对上述问题以小组为单位展开讨论,然后学生间互相评议、

  4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、

  在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( F 、Z 、U )判断问题就迎刃而解、

  【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力、

  投影显示(投影片2)

  例题?如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?

  (2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?

  [教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、

  变式训练,巩固新知

  投影显示(投影片3)

  【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a b c 所截,如 c a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、

  投影显示(投影片4)

  【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:

  投影显示(投影片5)

  【教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 C 、D 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。

  投影显示(投影片6)

  【教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 AB 、BD 、EF 看成是截线找三类角,这样既不遗漏又不重复、

  (四)总结、扩展

  1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、

  2、相交直线

  3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”

  【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。

  八、布置作业

  课本第72页B组第4题、

  【教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度

  作业答案

  4、答:(1)设 E BC 延长线上的一点,∠ A 与∠ ACD 、∠ ACE 是内错角,它们分别是由直线 AB 、CD 被直线 AC 截成的和直线 AB 、BE 被直线 AC 截成的。

  (2)∠ B 与∠ DCE 、∠ ACE 是同位有,它们分别是由直线 AB 、CD 被直线 BE 截成的和直线 AB 、AC 被直线 BE 截成的。

二元一次方程教案14

  一、内容和内容解析

  1.内容

  代入消元法解二元一次方程组

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

  在平面直角坐标系中求两直线交点坐标等.

  解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

  本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.

  二、目标和目标解析

  1.教学目标

  (1)会用代入消元法解一些简单的二元一次方程组

  (2)理解解二元一次方程组的`思路是消元,体会化归思想

  2.教学目标解析

  (1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

  (2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

  三、教学问题诊断分析

  1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

  2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

  本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

  四、教学过程设计

  1.创设情境,提出问题

  问题1

  篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

  师生活动:学生回答:能.设胜x场,负y场.根据题意,得

  我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

  这节课我们就来探究如何解二元一次方程组.

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.

  问题2 对比方程和方程组,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

  师生活动:根据上面分析,你们会解这个方程组了吗?

  学生回答:会.

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  设计意图:共同探究,体会消元的过程.

  问题3 教师追问:你能把③代入①吗?试一试?

  师生活动:学生回答:不能,通过尝试,x抵消了.

  设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.

  教师追问:你能求y的值吗?

  师生活动:学生回答:把x=6代入③得y=4

  教师追问:还能代入别的方程吗?

  学生回答:能,但是没有代入③简便

  教师追问:你能写出这个方程组的解,并给出问题的答案吗?

  学生回答:x=6,y=4,这个队胜6场,负4场

  设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

  师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?

  学生回答:代入这一步

  教师总结:这种方法叫代入消元法。

  教师追问:你能先消x吗?

  学生纷纷动手完成。

  设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.

  2. 应用新知,拓展思维

  例 用代入法解二元一次方程组

  师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

  设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.

  3.加深认识,巩固提高

  练习 用代入法解二元一次方程组

  设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.

  4.归纳总结,知识升华

  师生活动,共同回顾本节课的学习过程,并回答以下问题

  1. 代入消元法解二元一次方程组有哪些步骤?

  2. 解二元一次方程组的基本思路是什么?

  3.在探究解法的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第93页第2题

  五、目标检测设计

  用代入法解下列二元一次方程组

  设计意图:考查学生对代入法解二元一次方程组的掌握情况.

二元一次方程教案15

  第1、2课时(代入法解二元一次方程组)

  学习目标:

  重点:用代入法解二元一次方程组

  难点:用代入法解二元一次方程组

  课前预习:

  一、阅读教材P96-P98的内容

  二、独立思考:

  1、满足方程组 的x的值是-1,则方程组的解是_____________.

  2、用代入法解方程组 比较容易的变形是( )、

  A、由①得 B、由①得

  C、由得 D、则得

  3、用代入消元法解方程 以下各式正确的是( )

  A、 B、

  C、 D、

  4、如果 是二元一次方程,则 的值是多少?

  互动教学过程

  探究一:用代入法解方程组 。

  探究二:用代入法解二元一次方程组的一般步骤:

  步骤 名称 具体做法 目的

  1 变形 变形为

  2 代入

  3 求一元

  4 求另一元

  5 写出解

  探究三:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为

  2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小两种产品各多少瓶?

  自我能力评估

  一、课堂练习

  教材P98练习1、2题,P99练习第3、4题

  解下列方程组

  (1) (2) (3)

  二、作业布置

  教材P103习题8.2第1、2、4、6题。

  三、自我检验

  (一)填空题

  1、在方程 中,若用x表示y,则y=__________________,若用y表示x,则x=____________.

  2、用代入法解方程组 较简单的解法步骤为:先把方程______变为_________________,再代入方程________,求得_______的值,然后再求_________的值。

  3、二元一次方程组 的解为_______________。

  4、若 是方程组 的解,则m=_________,n=__________。

  5、在方程 中,若x与y互为相反数,则x=_______,y=___________。

  6、从方程组 中消去m,得x与y的关系式为_____________________。

  7、如果方程组 的解是方程 的一个解,则m=________________。

  8、用代入法解方程组 由得到用x的式子表示y是:_______________________。

  (二)选择题

  1、用代入法解方程组 使得代入后化简比较容易的变形是( )

  A、由得 B、由得 C、由得 D、由得

  2、用代入法解方程组 时,代入正确的是( )

  A、 B、 C、 D、

  3、解方程组 的最佳方法是( )

  A、由得 再代入 B、由得 再代入

  C、由得 再代入 D、由得 再代入

  4、方程 的一个解与方程组 的解相同,由m等于( )

  A、4 B、3 C、2 D、1

  5、如果 是方程组 的解,那 之间的关系是( )

  A、 B、 C、 D、

  6、在式子 中,当 时,其值为3,当 时,其值是4,当 时,其值为( )

  A、 B、 C、 D、

  7、某校八年级学生在会议室开会,若每排坐12人,则有11人无处从,若每排从14人,则余1人独从一排,则这个年级的学生总数为( )

  A、133 B、144 C、155 D、166

  (三)解答题

  1、用代入消元法解下列方程组:

  (1) (2) (3)

  2、已知方程组 的解中x与y互为相反数,求m的值。

  3、已知方程组 的解是方程 的一个解,求a的值。

  4、已知方程组 与方程组 有相同的解,求a、b的值。

  5、解下列方程组的过程中,是否有错误,如有错误,请指出来。

  解方程组

  解:由①得

  把代入中,

  y是任意数

  x是任意数

  因此方程组有无数个解

  6、若 求 的值。

  7、一个两位数,十位上的数字比个位数字大2,若将十位数了和个位数字交换位置,所得的数比原数的 多3,求这个两位数。

  8、甲、乙两人同解方程组 ,甲正确解得 ,乙因抄错C,解得 ,求A、B、C的值。

  9、已知等式 对于一切数都成立,求A、B的值。

  10、根据有关信息求解:

  (1)根据图中给出的信息,求每件T恤衫和每

  瓶矿泉水的价格。

  (2)用八块相同的长方形地砖拼成了一个大长

  方形,求每块地砖的长和宽。

  第3、4课时(加减消元法)

  学习目标:

  1、掌握用加减消元法解二元一次方程组的一般步骤,进一步体会消元的思想。

  2、能根据二元一次方程组的特点选择比较容易的方法解题。

  3、能由题意找出相等关系列出方程组解简单的实际问题。

  重点:用加减消元法解二元一次方程组

  难点:用加减消元法解二元一次方程组

  课前预习:

  一、阅读教材P99-P102内容

  二、独立思考;

  1、用加减消元法解方程组 ,如果要消去x,方法是_______________,得到__________,如果要消去y,方法是________________,得到_____________________。

  2、已知方程 有两个解分别是 和 则 =_________, =___________。

  3、解方程组 为了计算较简单,最好是( )

  A、①7-②3 B、①-②3 C、①+②3 D、①2-②

  4、已知方程组 ,则 与 的关系是_____________________。

  5、已知点A( ),点B( )关于 轴对称,则 的值是_____________。

  6、解方程组 比较简单的方法是_______________。

  7、大数和小数相差8,和是32,由大数是___________,小数是_______________。

  8、已知方程组 ,则 =__________________。

  互动课堂教学

  探究一:用加减法解方程组 。

  步骤 名称 具体做法 目的

  1 变形 使方程中某一个未知数的系数相等或变成相反数的形式。

  2 加减

  3 求一元

  4 求另一元

  5 写出解

  探究二:用加减消元法解方程组的一般步骤;

  探究三:2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?

  自我能力评估

  一、课堂作业:

  1、教材P102练习第1.2.3题。

  二、作业布置:

  教材P103习题8.2第3、5、7、8、9题

  三、自我检测

  (一)填空题

  1、解二元一次方程组的基本思想是________,其中常用的方法有______________、______________两种。

  2、用加减消元法解下列方程组 ,较简单的消元方法是:将两方程左右两边_________,消去未知数______。

  3、已知方程组 用加减消元法消去x的方法是_________,用加减法消去y的方法是_______。

  4、方程组 ,可用______________消去未知数y,也可用___________消去x。

  5、方程 的'解是_________________。

  6、用加着消元法解方程时,你认为行消哪个未知数较简单,填写消元的过程,不解:

  (1) ,消元的方法是_______________________.

  (2) ,消元的方法是_________________________.

  7、已知方程组 ,不解方程组,则 =___________, =___________。

  8、 满足 ,那么 的值是__________________。

  9、已知一个等腰三角形一腰上的中线把它的周长分为6cm和9cm两部分,则它的底边长是____________。

  (二)选择题

  1、解方程组比较简单的消元方法是( )

  A、用含y的式子表示x,用代入法 B、加减法

  C、换元法 D、三种方法完全一样

  2、用加减法解方程组 ,下列解法不正确的是( )

  A、○13-○22,消去x B、○12-○23,消去y

  C、○1(-3)+○22,消去x D、○12-○2(-3),消去y

  3、用加减法解方程组 ,其解题步骤如下:(1)○1+○2得 ;(2)○1-○22得 ,所以原方程组的解为 ,则下列说法正确的是( )

  A、步骤(1)、(2)都不对 B、步骤(1)、(2)都对

  C、本题不适宜用加减法解 D、加减法不能用两次

  4、若二元一次方程 有公共解,则m等于( )

  A、-2 B、-1 C、3 D、4

  5、已知方程组 的解为 ,则 的值为( )

  A、4 B、6 C、-6 D、-4

  6、以方程 的解为坐标的点P( )一定不在( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  7、如果关于x、y的二元一次方程组 的解x、y的差是7,那么k的值是( )

  A、-2 B、8 C、0.8 D、-8

  (三)解答题

  1、用加减法解下列方程组:

  (1) (2) (3)

  2、用适合的方法解下列方程组:

  (1) (2) (3)

  3、若方程组 的解满足 ,求m的值。

  4、已知方程组 中 的系数已经模糊不清,但知道其中表示同一个数,也表示同一个数,且 是这个方程组的解,你能求出原方程组吗?

  5、已知关于 有方程组 的解是 ,求 。

  6、解方程组 。

  7、在一本书上写着方程组 的解是 ,其中y的值被盖住了,你能求出p的吗?

  8、已知 , ,求 的值。

  9、如图,在平面直角坐标系中A、B两点的坐标满足方程

  10、解这个方程组

【二元一次方程教案】相关文章:

二元一次方程教案03-27

二元一次方程教案15篇04-01

二元一次方程教学设计04-06

二元一次方程公开课教案6篇03-27

《实际问题与二元一次方程组》教案03-11

二元一次方程与一次函数教案04-01

二元一次方程组教学设计07-07

二元一次方程组教学设计06-05

二元一次方程组教后反思10-06