成人高考数学知识点总结

时间:2024-02-20 13:00:14 总结 投诉 投稿
  • 相关推荐

成人高考数学知识点总结

  总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,不妨坐下来好好写写总结吧。那么总结有什么格式呢?下面是小编收集整理的成人高考数学知识点总结,希望能够帮助到大家。

成人高考数学知识点总结

成人高考数学知识点总结1

  1、集合思想及应用

  集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解。

  例:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。

  2、充要条件的判定

  充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。

  例:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件

  3、运用向量法解题

  本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。

  例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。

  4、三个“二次”及关系

  三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。

  例:已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。

  5、求解函数解析式

  求解函数解析式是高考重点考查内容之一,需引起重视。

  例:已知f(2-cosx)=cos2x+cosx,求f(x-1)。

  例:(1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式。

  (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式。

  6、函数值域及求法

  函数的值域及其求法是近几年高考考查的重点内容之一。

  例:设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。

  (1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。

  (2)当m∈M时,求函数f(x)的最小值。

  (3)求证:对每个m∈M,函数f(x)的最小值都不小于1

  7、奇偶性与单调性(一)

  函数的单调性、奇偶性是高考的重点内容之一,掌握判定方法,正确认识单调函数与奇偶函数的图象。

  例:设a>0,f(x)= 是R上的'偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数。

  8、奇偶性与单调性(二)

  函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。

  例:已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。

  例:已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值。

  9、指数函数、对数函数问题

  指数函数、对数函数是高考考查的重点内容之一。

  例:设f(x)=log2 ,F(x)= +f(x)。

  (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

  (2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;

  (3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解。

  10、函数图象与图象变换

  函数的图象与性质是高考考查的重点内容之一,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。

  例:已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。

  11、函数中的综合问题

  函数综合问题是历年高考的热点和重点内容之一,一般难度较大。

  例:设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4。

  (1)求证:f(x)为奇函数;

  (2)在区间[-9,9]上,求f(x)的最值。

  12、三角函数的图象和性质

  三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。

  例:已知α、β为锐角,且x(α+β- )>0,试证不等式f(x)= x<2对一切非零实数都成立。

  例:设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。

  13、三角函数式的化简与求值

  三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。

  例:已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.

  14、三角形中的三角函数式

  三角形中的三角函数关系是历年高考的重点内容之一。

  已知△ABC的三个内角A、B、C满足A+C=2B. ,求cos 的值。

  15、不等式的证明策略

  不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。

  16、解不等式

  不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式。

  17、不等式的综合应用

  不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出。不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题。

  例:设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0

  (1)当x∈[0,x1 时,证明x

  (2)设函数f(x)的图象关于直线x=x0对称,证明:x0< 。

成人高考数学知识点总结2

  第一部分代数

  (一)集合和简易逻辑

  1、解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号各种跟集合相关的符号含义,并能运用这些符号表示集合与集合、元素与集合的关系。

  2、了解充分条件、必要条件、充分必要条件的概念。

  (二)函数

  1、了解函数概念,会求一些常见函数的定义域。

  2、了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。

  3、理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。

  4、理解二次函数的概念,掌握它的图象和性质以及函数y=ax?+bx+c(a≠0)与y=ax?(a≠0)的图象间的关系;会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题。

  5、理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。

  6、理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。

  (三)不等式和不等式组

  1、了解不等式的性质,会解一元一次不等式、一元一次不等式组各可化为一元一次不等式组的不等式,会解一元二次不等式。会表示不等式或不等式组的解集。

  2、会解形如1ax+b1≥c和1ax+b1≤c的绝对值不等式。

  (四)数列

  1、了解数列及其通项、前n项和的概念。

  2、理解等差数列、等差中项的概念,会灵活运用等差数列的通项公式、前n项和公式解决有关问题。

  3、理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。

  (五)导数

  1、理解导数的概念及其几何意义。

  2、掌握函数y=c(c为常数),y=c(n∈N+)的导数公式,会求多项式函数的导数。

  3、了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

  4、会求有关曲线的切线议程,会用导数求简单实际问题的最大值与最小值。

  第二部分三角函数

  (一)三角函数及其有关概念

  1、了解任意角的概念,理解象限角和终边相同的角的概念。

  2、了解弧度的概念,会进行弧度与角度的换算。

  3、理解任意三角函数的.概念,了解三角函数在各象限的符号和特殊角的三角函数值。

  (二)三角函数式的变换

  1、掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。

  2、掌握两角和、两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明。

  (三)三角函数的图象和性质

  1、掌握正弦函数、余弦函数的图象和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。

  2、了解正切函数的图象和性质。

  3、会求函数y=Asin(ωx+Ф)的周期、最大值和最小值。

  4、会由已知三角函数值求角,并会作符号arcsinx、arccosx,、arctanx表示。

  (四)解三角形

  1、掌握直角三角形的边角关系,会用它们解直角三角形。

  2、掌握正弦定理和余弦定理,会用它们解斜三角形。

  第三部分平面解析几何

  (一)平面向量

  1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

  2、掌握向量的加、减运算,掌握数乘向量的运算,了解两个向量共线的条件。

  3、了解向量的分解定理。

  4、掌握向量数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用4了解向量垂直的条件。

  5、了解向量的直角坐标的概念,掌握向量的坐标运算。

  6、掌握平面内两点间的距离公式、线段的中点公式和平移公式。

  (二)直线

  1、理解直线的倾斜角和斜率的概念,会求直线的斜率。

  2、会求直线方程,会用直线方程解决有关问题。

  3了解两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题。

  (三)圆锥曲线

  1、了解曲线和方程的关系,会求两条曲线的交点。

  2、掌握圆的标准方程和一般方程式以及直线与圆的位置关系,能灵活运用它们解决有关问题。

  3、理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。

  第四部分概率与统计初步

  (一)排列、组合

  1、了解分类计数原理和分步计数原理。

  2、了解排列、组合的意义,会用排列数、组合数的计算公式。

  3、会解排列、组合的简单应用题。

  (二)概率初步

  1、了解随机事件及其概率的意义。

  2、了解等可能性事件的概率的意义,会用计数方法和排列组合基本公式计算一些等可能性事件的概率。

  3、了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

  4、了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。

  5、会计算事件在n次独立重复试验中恰好发生k次的概率。

【成人高考数学知识点总结】相关文章:

数学的知识点总结08-22

数学的知识点总结05-11

数学知识点总结06-26

数学知识点总结03-21

数学圆知识点总结05-17

数学中考知识点总结08-23

数学高考知识点总结08-26

苏教版数学中考知识点总结08-02

数学必修四知识点总结04-25

中考数学知识点总结07-13