积变化的规律教学反思
作为一位刚到岗的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,那么大家知道正规的教学反思怎么写吗?下面是小编帮大家整理的积变化的规律教学反思,仅供参考,大家一起来看看吧。
积变化的规律教学反思1
《积的变化规律》是人教版教材数学四年级上册第四单元的内容。它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我先创设情境,让学生列出相应的乘法算式,通过对算式的观察,让学生讨论自己的发现,然后引出新知,再让学生根据自探提示自主的去探索规律、验证规律,并使用规律.,本课主要是学生自主地去学习,我鼓励学生积极发言,大胆猜想,小心求证,积极主动地探索新知,让学生体会成功的喜悦,激发了学习兴趣,增强了自信心。这节课上下来还是存在许多问题:
1、由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。这在后面拓展应用知识时表现的尤为明显,部分学生还是用以前的老方法进行计算,而不是找到规律直接写得数。在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。
2、要用好评价语言,鼓励学生参与到课堂学习中。这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是大部分学生还是不敢举手大胆的交流。这部分学生主要是害怕自己说错了,让别的同学取笑。针对学生不敢发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。
3、对于积的变化规律的运用,学生对于基本的练习能够运用自如,但是灵活度较高的练习就有些困难。因此,在选择练习时应关注练习的.广度,让学生见多识广、灵活运用。
4、学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。
5、由于学生参与度不高,时间没有把握好导致所学的知识没有进行提升,设计的巩固练习题也没来得及做,还有就是没有对本节课进行总结。
学生们个个像数学家一样,进行大胆的猜想,并自主地举出例证材料进行验证,发现真正的数学规律。这样,学生在研究发现数学规律的同时,受到了一次科学研究方法的启蒙,是发展学生的创新意识和创造性学习的有效途径。因此,在今后的教学中,我将给学生提供充分的时间与空间,与学生合作,教师应作为指导者参与其中,规范研究过程,增强验证过程的实效性。这样,从整体到部分,由部分又回到整体,从上向下,从下向上,由表及里地引导学生观察,将静态的、结论性的数学转化为动态的、探索性的数学活动,使学生有充分的机会从事数学活动,帮助学生在实践探索的过程中体验数学,并从中获得一定的数学思想方法和数学活动的经验,培养学生从正反两个方面观察事物的辨证思想。同时作为教师,在课前应该努力做好各种设想、准备,然而课堂上却又经常碰到出乎意料的问题,如所面对的学生在认知水平和学习能力存在显著差异等,老师要表现出较好的课堂机机智,不能顺着教案往下走。这时需要教师适时随机应变,根据学生学习的情况,灵活地调整原有设计,生成新的超出原计划的教学流程,使课堂处在动态和不断生成的过程中,以满足学生自主学习的要求,只有把自己的教育能力上升到教育智慧的高度,才能胜任动态生成式教学。
积变化的规律教学反思2
教材分析
《积的变化规律》是人教版四年级上册第三单元的例题、
本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的.理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再出示20×4=80,10×4=40,5×4=20,引导学生观察,发现规律,提出猜想。
学情分析
该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教学目标
一、知识与技能:
(1) 使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。
二、过程与方法:
(1)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。
三、情感态度价值观:
(1)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点和难点
1.教学重点:
使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。
2、教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。
积变化的规律教学反思3
探索规律”是数与代数领域要教学的主要内容之一,也是整数四则运算中的一个重要内容。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。教材安排了一个例题——例3。在教学中根据教改的要求,学习生本课堂的模式,试图引导学生通过观察、口算、计算、说理、交流等活动,归纳出积的变化规律。并会用数学语言刻画这个规律,感悟函数的思想方法。同时,让学生通过观察、比较、分析、概括、等思维活动体验归纳规律的方法,从而获得一定的价值体验。
这堂课我以几组乘法算式为载体,通过前置学习,引导学生探索当一个因数不变时,另一个因数与积的变化规律情况,从中归纳出积的变化规律。在整个学习过程中,我努力做到给学生留出充足的探索空间,让学生自主地进行探索与交流,从而掌握规律,应用规律。探究过程中,我鼓励学生仔细观察,动脑思考,发现规律,让他们把发现的规律说给同伴听,然后全班交流,在交流中鼓励学生用一句话概括出规律。这样在学生进行小组讨论中,发挥集体的智慧,群策群力,让学生自己经历研究问题的一般方法:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。
在教学完本节课后,留给自己更多的是无尽的思索。在课堂中,为什么开始兴趣高涨而随后却缄口不言呢?自己在活动中真正做到组织者、引导者与合作者的作用了吗?学生的自主性充分发挥了吗?学生在经历积的变化规律的发现过程中真切地感受到规律了吗?学生的分析能力是否得到了进一步的提高?一连串的问号在我的脑海中闪过。我静坐下来,对自己这节课进行了细细的回顾与反思。
本节课我最大的优点在于出示算式之后,引发学生进行思考、让每个学生都投入到问题的探索中去。问题是:
(一)活动要求不是十分明确。有效的课堂追求简单和实用。即让学生用简单的方法解决数学问题,把复杂的问题简单化而不是把简单的问题复杂化;启发引导不到位,学生在计算算式结果上浪费了很多时间。
(二)鼓励性语言不到位。好的数学老师应该善于营造一种成功、快乐的对话情境。教师和学生不仅仅通过语言进行讨论或交流,而更主要的`是进行平等的心灵沟通。在对话的过程中,教师凭借丰富的专业知识和社会阅历感染和影响着学生,在定向研究环节,让学生交流探索后的结果。
(三)在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。这使我更加清醒的认识到:真实的课堂应该面对学生真实的认知起点,展现学生真实的学习过程,让每个学生都有所发展。
看来,在课堂上,学生真正主动探索知识的目标并不太容易实现。希望自己在以后的教学中,在同行的帮助下,不断探索,不断改进,不断创新,不断长进。
积变化的规律教学反思4
积的变化规律是学生学习乘法以来遇到的第一个规律性的内容。从内容上来说,它更加抽象化,更接近纯数学的学习。如何走好这一步,对学生下一阶段的数学学习,思维能力的发展,具有重要的作用。整堂课的设计始终以学生自主探究为主体,注重展开知识的发生发展过程,重视展开学生的思维过程,使学生真正成为学习的主人,而教师是数学学习的组织者、引导者和合作者,帮助学生在实践探索的过程中体验数学,培养学生数学交流的能力和合作意识,初步获得探索和发现数学规律的基本方法和经验。
一、情景“生活化”,让学生学习有用的数学
《数学课程标准》指出“数学内容应当是现实的”,应当“学有用的数学”。教师不仅考虑到了与生活实际相联系,激发学生的.学习欲望,更考虑到与本堂课的知识点要相结合,有利于学生进行探究的素材。本节课联系全社会非常关注的西藏发展和青藏铁路建设为线索,教师充分提供表象将学生带到真实的生活中,让他们在一种宽松的学习氛围下,遵循从具体到抽象的认知规律,兴致勃勃地探索数学知识的奥秘——积的变化规律,并一次次地创设情景,让学生运用规律作出分析、判断和计算,解决了西藏铁路运输和校园改造等生活实际问题,培养了学生的数学意识。
二、关注“个性化”,让学生自主探究和创造
学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。学生们个个像数学家一样,进行大胆的猜想,并自主地收集例证材料进行验证,发现真正的数学规律。这样,学生在研究发现数学规律的同时,受到了一次科学研究方法的启蒙,是发展学生的创新意识和创造性学习的有效途径。
三、施教之法,贵在启导
师是教学活动的设计者、组织者,主导着课堂教学活动的全过程。充分发挥教师的“主导”作用、是促进学生“学”的关键。为此,教必须以”导”为载体,以“学”为根本。开课时,引导学生从现象上感知:一个因数不变,另一个因数变了,积也随着发生变化;通过提问:从上往下观察和从下往上观察,你发现了什么?
积变化的规律教学反思5
一、准确把握起点,合理的运用知识迁移
本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。我抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
二、自学并经历探索研究的全过程
学生自学后,让学生经历了三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。
在这里,知识的'掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。
总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。
积变化的规律教学反思6
本节课的教学内容是四年级上册第三单元的例4---“积的变化规律”。在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面。教材例题以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。在这个过程的探索中,我让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辨证思想的启蒙教育。
在教学过程中,有以下几点感觉还不错的地方:
1、我设计了让学生自己举例像书上那样写出2组算式,还设计了让学生写出自己的'发现,这样让学生有自己的独立思考,也对后面规律的揭示起到铺垫的作用。
2、通过规律过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
3、练习的设计能由易到难,让学生在学习中感到轻松自如,并且重视每次练习的反馈,及时掌握学生的学习情况。
这节课也有一些不足之处:
1、教师的语言不够简练,在教学2的规律时让学生探究规律的时间太多,有的时候学生已经说的很好了就不要让其他学生再说了。
2、教师的提问要精练,例如教师提问“你能用我们今天学的知识来解决下面的问题吗?”可以换成“这节课我们用积的变化规律来解决下面的问题。”
积变化的规律教学反思7
《积的变化规律》主要引导学生探索“当一个因数不变时,另一个因数与积的变化情况”,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
这堂课我以几组口算乘法算式为载体。口算环节结束后,我问:“你能根据每组算式的`特点接下去再写2个算式吗?”通过这一环节,只要学生能写出算式,那么他基本上对规律就有了大致的了解,虽然说不出,也心领神会了。
但在接下来的练习中,学生突出的表现是不能准确的找到积的变化规律,学生似乎只停留在知识的表面,在教完这节课后,留给自己是无尽的思考,为什么学生开始学习时兴趣高涨,到后来的沉默,说明学生没有正真的掌握,接下来只好培养学生迁移类推培养学生迁移类推的能力和解决问题培养学生迁移类推的能力,通过学生多说多练来改善了。
积变化的规律教学反思8
教学内容:苏教版义务教育课程标准实验教科书数学四年级(下册)P83例题,P83-84“想想做做”。
教学目标:
1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。
2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得探索规律的经验,发展思维能力。
3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的.价值,逐步形成良好的与他人合作的习惯和意识。
4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。
教学过程:
一、游戏引入:
用计算器玩游戏
要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。
【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】
二、揭示课题:
1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)
2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?
【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】
三、探索规律
(一)建立猜想
1、用计算器计算:36×30的积。
2、36、30在这个乘法算式中叫做什么?1080又叫做什么?
3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?
积变化的规律教学反思9
第一轮“达标立标”课,已圆满的结束,经过三年级数学组老师的共同努力,从选定内容,到一次次备课,修改教案,再到重新上课,在于主任的引领和郭老师的帮助下,我们顺利的完成了《积的变化规律》的研讨。在一次次的磨课中不断有新的灵感,而课堂也日趋完善,在整个磨课过程中自己成长并收获着。
第一次上课是由杜老师执教的,通过呈现课本情景图,读信息,由谈话导入,通过读信息提问题,抛出需要学生解决的问题,从而引出了课题,学生通过老师提供的自学指导进行自学,师生交流规律,然后就是规律的应用。整节课符合先学后教的原则,等杜老师上完这节课之后,我们又静下心来反思,课是上完了,但是是否所有的学生都感受到积的变化规律了?是否每个学生都按照先学后教进行学习了?在于主任的及时点拨下,我们没有灵活的运用先学后教,从而使整节课的教学流程及环节显得有些牵强。本节课是一节找规律的课,学生应该经历从“猜测→验证→得出正确结论”,通过这些环节,让学生充分感知规律的来源和学习数学的严谨性。在教研组老师们的质疑与提醒下,我们又对课进行了重新的修改,让学生真正体验“猜测→验证→得出正确结论”.同时把结论从原来的“一个因数不变,另一个因数扩大到原来的几倍,积就扩大到原来的几倍”,修改为便于学生理解的“一个因数乘几,积就乘几”。同时也对本节课的知识有一个适当的扩展”一个因数不变,另一个因数除以几,积也除以几”.
对课进行了调整,第二次上课是有毕老师进行执教.先由一组口算导入,交流解题的好方法,从而引出课题,以以温馨提示出示自学指导,整节课经历了学生大胆的猜测,验证,最后得出结论,整节课充分体现了“找规律”课型的特点。在整个授课过程中,毕老师思路清晰,环环相扣。如果能够认真倾听孩子的问题,对孩子的问题进行跟踪提问,这样的.课堂还会更紧揍,更有激情一些。
反思自己的课堂教学
我是三年级组最后一轮上课的老师,在录播教室上课给了充分学习的机会,不禁对自己的一言一行有充分的了解,而且能更好的学习到优秀老师的亮点。讲完课,没有感觉到轻松,反而多了几分沉重。通过这节课,认真总结了自己在教学上的一些不足之处。
一、要认真备好课,每个细节落实到位
讲课之前听了同组三个老师的授课,以为自己对整个教学思路和教学环节都有了一定的了解,所以在备课方面没有尽全力去认真对待,导致整节课过度环节过渡语不够完善,显得课堂不够紧凑。如,做完口算后,问“有什么好方法做的这么快”应该说设计具有开放性,起到了激活学生思维的作用。可上完课,细细一琢磨,感觉很不好,我的“预设”没有达到目的,对课堂提问的“度”也没有把握好,课题出现的有点突然。所以一节课不单单是备好教案,更要备好孩子,考虑好孩子会出现的问题,自己能够及时的应付。
二、规范自己的课堂语言
反思自己的课堂教学,自己激励和表扬孩子的语言用的较少,而孩子则更多的需要老师的鼓励和评价,而更多时候用的则是命令孩子的语言。另外,课堂上应该静下心来认真倾听孩子的发言,而自己的课堂则是老师说的多,说多了孩子就会用依赖性。课堂真的应该放手多让孩子说,但是老师的总结要起到一个画龙点睛的作用。
三、认真对待每一节家常课,锻炼自己
一节课40分钟,而学生知识的取得正是靠这一节节的家常课。针对这次讲课,自己一定要认真反思克服不足,认真准备好每一节课,要运用好课堂40分钟。
同一教学内容不同教学风格,使我又一次深刻体验到,磨课的重要性,如果每节课能从研究备课和上课开始,一节课一节课地加以研究和积累,就能增强自己可持续教学的能力,促使自己专业化成长。在今后的教学中,要严格要求自己,尽自己最大努力做一个负责任的好老师。
积变化的规律教学反思10
一、给学生足够的探索空间,把课堂还给学生。
在数学课中,教师要为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,留给学生足够的思维空间。不求十全十美,只求一得。因此,我在这节课中尽量体现这一点。由故事导入新课,当学生回答:“谁是聪明的一笑?”之后,我让学生说出原因(算式),随机板书算式,然后让他们分小组讨论,把自己的发现在小组内交流,最后全班一起总结出“在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变”。接着,出示练习,巩固所学的知识。第二个环节,我还是应用刚才的故事,给学生限定被除数800,然后让学生把800个桃子分给不同只数的小猴,(即改变除数),让学生以小组为单位接着计算,并提出问题:“通过计算你能发现什么?”每个学生自由计算,思考,小组讨论总结,最后进行全班汇报。学生通过计算、发现、交流、辨析、整合,发现“在除法里,被除数不变,除数扩大(缩小)几倍,商就缩小(扩大)几倍”。第三个环节,我抛出问题:“你还能自己设计一组除数不变的算式,通过计算,找出一些规律吗?”“一石激起千层浪”,运用知识的迁移,给学生留下足够的探索空间,学生通过尝试、探究、猜想、思考,总结了“当除数不变,被除数扩大或缩小几倍,商就扩大(缩小)几倍”的变化规律。这堂课由学生先学习“商不变的性质”延伸到商的变化规律一、二,学生自始自终的参与了学习的全过程,数据都来自与学生,比较真实,让学生参与发现规律、探究规律、总结规律的过程中,让学生成为学习的主人。同时让学生在观察、思考、尝试、交流过程中,实现师生互动、生生互动。促进学生主动参与,由“要我学”变成了“我要学”。
二、改变了教材的编排顺序。
教材先是安排学习商的两个变化规律,然后,由填写表格,学习商不变的性质。在教学时,我改变了教材的顺序,先讲商不变的性质,再讲商的两个变化规律。符合由易到难的特点,学生易于掌握。
三、注重培养学生总结知识的能力。
本节课,学习了商的变化规律的三条规律,每一次都是让学生通过“观察——探索——交流——总结”完成任务,最后,一个环节,我都让学生根据黑板上的板书,用数学语言自己总结出规律,这样,更加深了学生对规律的记忆,理解。
四、(这一个环节,由于意外,没能够按时完成)在巩固练习时,创设了学生敢兴趣的游艺宫的情境,我设计了不同层次的四个栏目(轻松园地、知识窗、竞赛广角、益智园)。
将本节课的重点内容,通过几个数学活动进行应用,既有双基内容的知识训练,又有发展学生能力的益智园,通过轻松园地、竟猜广角的训练,使学生对基础知识得以巩固,通过知识窗口、对规律的.判断、对规律的填空,使学生对商不变的规律得以辨析,通过对益智园的解答,使不同学生的能力得以提高。将不同的数学游戏和数学知识有机结合,使学生能较好的巩固商不变的规律。
五、由于,这节课的课堂容量比较大,因此,时间安排不够合理,前面花的时间较多,导致练习的时间较少;回答问题没能够面向全体学生;课堂气愤不够活跃,部分学生的积极性不够高。
积变化的规律教学反思11
?积的变化规律》是人教版教材数学四年级上册第3单元的内容。在以前计算的过程中就已经初步感悟过,但是没有总结成规律,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
“探索规律”是数与代数领域要教学的主要内容之一。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我引导学生通过观察、口算、计算、说理、交流等活动,归纳出积的变化规律。并会用数学语言刻画这个规律,感悟函数的'思想方法。同时,让学生通过观察、比较、分析、概括、等思维活动体验归纳规律的方法,从面获得一定的价值体验。
成功之处:
1.引导学生经历规律发现的过程,让过程在孩子的经历中变得清晰。教学中要让学生充分经历规律的发现过程,把发现的过程细化、广泛化,让每个学生都参与。在起初的观察里思维灵活的学生尝试说出“两个数相乘,一个因数不变,另一个因数乘几,积也乘几”,接着引导学生理解“也”的含义,强化“一个因数不变,另一个因数和积的变化是相同的”。在这里学生的已有水平已经达到了初步认识“积的变化规律”,接下来让学生举例,深化规律。这个过程,让学生感悟到规律的得出要经过探索、猜想、验证,归纳。培养了学生各方面能力。
2.体验成功,让每个孩子都有所收获。每个孩子都期待成功,每个孩子都能成功,数学要让不同的人得到不同的发展。在教学中让每个孩子都参与在举例子的过程中,举不同的例子来验证规律,运用规律,这个过程就是学生消化知识、运用知识的过程,孩子在数学活动中得到了成功的喜悦。
3.体会快乐的同时感受数学的严谨性。数学和其他学科不同,它是一门逻辑性非常强非常讲究严谨性的学科,因此在教学中要注意特点,突出教学的严谨性。这节感受数学严谨性就是渗透在各个环节。比如发现了“两个数相乘,因数乘几,积也乘几”再让学生说说理解;老师也展示自己的想法与学生的想法产生冲突;这些都是数学严谨性的体现。
不足之处:
教学第一个规律时,呈现的材料太少,让学生一下子由初步的感悟总结提炼规律,不符合学生的认知规律。应该在初步感悟的基础上让学生尝试举例,再去总结提炼,这样既加深学生的理解,也符合认知规律。
积变化的规律教学反思12
积的变化规律是在学生已经掌握了三位数乘两位数的口算和笔算方法的基础上进行教学的,信息窗呈现了筛沙车清理海水浴场的情景。通过介绍筛沙车每分钟清洁沙滩的面积数量,引导学生提出问题,引入对积的'变化规律的探索。课堂教学的重点是让学生自己探索出积的变化规律,并灵活运用这个规律解决问题。
在探究积的变化规律时,我注重学生的观察、分析、比较,让学生在充分经历中感悟,在充分感悟中提炼。新课标注重学生的“过程与方法”的探究,提倡学生充分地经历问题的产生、发现、探索的过程。整个过程,学生主动参与,借助统计表和乘法算式探究积的变化规律,在大量的举例、充分地观察中去感悟积的变化与不变的规律,初步构建自己的认知体系,充分经历了知识的发生过程。较好的培养了学生的观察能力、分析能力和概括能力,培养学生的探究意识。
为了让学生感受数学与生活的密切联系,提高学习数学的兴趣。在课堂练习中,我再次出示本课信息窗情境图。让学生继续探究:5辆筛沙车每分钟清洁沙滩多少平方米?15辆呢?30辆呢?“这个练习回归生活实践,让学生感受到积的变化规律存在于生活的各个角落。引导学生联系生活实际,学以致用。
不足之处:
教学过程中我发现,学生在描述积的变化规律时,语言总是不够准确、表述总是不够完整。于是,我发挥了教师的主导作用,引导学生逐步完整、准确地描述出积变化的规律。今后我们应该注重学生概括能力的培养。
积变化的规律教学反思13
《积的变化规律》教学反思本节课的课题是积的变化规律,是在学习了三位数乘两位数的的基础上探索积的变化规律。在讲新知识之前,让学生先明确关系:因数X?因数=积。引导学生思考:若改变其中的`一个因数不变,改变另一个因数,积灰发生怎样的变化?教师作出正确的指引,可以节约课堂时间。随后给出两组算式(教材例题),让学生通过自主思考,自主探索,发现和归纳出积的积的变化规律,再让学生分别用三位数乘两位数的方法和运用规律求得数的方法,对积的变化规律进行验证,让学生认识到数学的严谨性,最后进行针对性习题巩固。
在练习设计上,难度层次分明。先是运用规律计算有规律算式,进而运用规律解决实际问题。但是在本节课的教学实践上发现还有一些环节有待进一步完善:
在引入方面,学生更能接受把旧知识向新知识过度的方式的学法。
在验证环节上,要根据学生的实际情况设计题目难度,本课上验证环节应降低难度,计算太难会导致重点发生偏离,无法突破。在进行一些探索活动的设计时还应更大胆放手,让学生成为学习的主人,使课堂成为学生展示个性的舞台。
积变化的规律教学反思14
今天教学了积的变化规律,昨天布置了预习作业:
计算、再观察比较下列算式:30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的.积乘几求到现在的积。
我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650 直接写出275*92= 的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
积变化的规律教学反思15
今天教学了积的变化规律,昨天布置了预习作业:计算、再观察比较下列算式30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的是在后面的.练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的积乘几求到现在的积。我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650 直接写出275*92= 的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
【积变化的规律教学反思】相关文章:
积的变化规律教学反思05-18
《积的变化规律》教学反思01-21
积的变化规律教学反思15篇02-08
《积的变化规律》教学反思15篇04-20
《积的变化规律》教学反思(15篇)04-20
积的变化规律教学设计06-06
《积的变化规律》教学反思汇编15篇04-20
积的乘方教学反思12-27