圆锥的体积教学反思

时间:2023-04-06 09:39:23 教育反思 投诉 投稿

圆锥的体积教学反思

  身为一名刚到岗的教师,我们的任务之一就是教学,对学到的教学新方法,我们可以记录在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编帮大家整理的圆锥的体积教学反思,仅供参考,希望能够帮助到大家。

圆锥的体积教学反思

圆锥的体积教学反思1

  本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。

  一、收获

  1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的'价值。

  4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  二、不足:

  1、许多学生在计算过程中常忘记除以3,需要加强练习。

  2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。

  3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。

  4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。

圆锥的体积教学反思2

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的'。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

圆锥的体积教学反思3

  圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:

  一、大胆猜测,培养猜测意识。

  假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的.体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

  二、操作验证,培养科学的实验观。

  数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:V=1/3Sh。

  教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。

  《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,我先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且我有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥.

  总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。我为自己加油:做一个引领学生学会探究学习的好老师!

圆锥的体积教学反思4

  在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

  一、 让学生经历猜想—实验—验证—结论的实践探索的全过程。

  新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。

  二、给学生一个“合作交流、自主探究”的空间。

  新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。书学者们课程,不但需要观察,还需要试验。有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。

  在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的教学方式。学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。教师只是学习的组织者、引导者与合作者,是平等中的首席。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的'喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  三、让学生在学习中体验数学的应用价值

  人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,,而变得更精彩。

圆锥的体积教学反思5

  《圆锥的体积》是在学生掌握了圆锥的认识和圆柱的体积基础上教学的。教学时让学生通过实验的方法发现圆锥与等底等高的圆柱体积之间的关系,从而推导出圆锥的体积等于和它等底等高的圆锥体积的'三分之一,并能运用这个公式计算圆锥的体积,让学生从感性认识上升到理性认识。

  教学的主线是:

  提出问题—直觉猜测—实验探究—合作交流—实验验证—得出结论—实践运用。

  新课一开始,我让学生观察,先猜测圆锥的体积和圆柱体的体积什么有关?学生联系到圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习的目标,接着我让学生亲自动手实践,用自制的学具去实验圆锥和圆柱的体积关系,通过反馈4种小组的实验结果,得出只有在等底等高的情况下,圆锥的体积是圆柱体积的1/3,接着我又用多媒体课件演示,让学生再次体验这一结论。这一过程让孩子亲历教学验证,有一种水到渠成的感觉,学生自己很容易地推导出圆锥体的体积公式。

  对圆锥体积建立了鲜明的印象之后,就应用公式解决实际生活中的教学问题,起到了深化知识点的作用。教学中让学生真正成为活动的主动参与者,让学生真正的感受自己是学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学困生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

  但在教学之后感觉到遗憾的是:学生动手能力太差,不能按要求制作学具,实验时出现差错;还有个别学生不能积极参与实验,自主学习、自主探究意识较差,以后在教学中应在这些地方对学生加以指导;另外,个别学生计算能力太差,计算准确率低,而且个别学困学生对于一些需要灵活判断的题目还是不能有较好的把握,从而可以看出,他们对于该体积公式的理解也只是停留在较简单和较低的层面上。同时还有一些学生在计算过程中常常忘记乘1/3,因此,以后需要加强训练。

圆锥的体积教学反思6

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的`一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。

圆锥的体积教学反思7

  最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:

  1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

  2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

  3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算

  方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

  4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的`应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

  从教学层面上讲,我觉得要注意这么几点:

  1、让学生经历知识的生成,理解公式的由来。

  2、熟记相关公式和一些常见数据,提高计算的正确率和速度。

  3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。

圆锥的体积教学反思8

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的'实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

圆锥的体积教学反思9

  《圆锥的体积》教学设计与反思 教学目的:使学生初步掌握圆锥体积的计算公式。

  并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教学难点:圆锥的体积应用

  学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件

  教学时间:一课时

  教学过程:

  一、复习

  1、圆锥有什么特征?(课件出示)

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。 板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的'推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  学生分组实验。

  汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。 圆柱里装满沙子,倒入与他等底等高的圆锥,三次正好倒完。

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 ×圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高 师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 Sh

  师:在这个公式里你觉得哪里最应该注意?

  教学例1一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  1/3×19×12=76((立方厘米))

  答:这个零件体积是76立方厘米。

  做一做:课件出示,学生回答后,教师订正。

  1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

  2、已知圆锥的底面半径r和高h,如何求体积V?

  3、已知圆锥的底面直径d和高h,如何求体积V?

  4、已知圆锥的底面周长C和高h,如何求体积V?

  5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

  例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克) 判断:课件出示,学生回答后,教师订正。

  1、圆柱体的体积一定比圆锥体的体积大( )

  2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。

  3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )

  四、教师小结。

  这节课我们学习了哪些知识?你还有什么问题吗?

  五、作业。课本练习

  六、板书

  圆柱的体积=底面积×高

  字母公式:V圆柱= S·h

  圆锥的体积=圆柱的体积=底面积×高

  字母公式:V圆锥= S·h

  教学反思

  这节课是六年级圆柱和圆锥的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先复习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。

圆锥的体积教学反思10

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

圆锥的体积教学反思11

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的`圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

圆锥的体积教学反思12

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  《圆锥》这节课,其教学目标是:

  1)、认识圆锥,了解圆锥的底面、侧面和高;

  2)、掌握圆锥高的测量方法;

  3)、圆锥体积公式的推导;

  4)、通过例一例二使学生会应用圆锥公式进行简单的计算。

  教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3。14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的.出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

圆锥的体积教学反思13

  圆锥的体积是在学习了圆锥的认识的基础上进行教学的。

  这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。

  第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的.立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调V=3SH的前提条件是等底等高。

  反思:这一环节让学生用转化的思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。

  全课反思:英国教育家思宾塞说过:“在教育中应该尽量鼓励个人发展的过程,应该引导儿童自己进行探究,自己去推理,给他们讲的应该尽量少,而引导他们去发现的应该尽量多,这样教师在教学中才能真正由重结果向重过程转变,成为学生的组织者、引导者与合作者”。因此,这节课,我引导学生进行实验,放手让他们动手操作,在操作的过程中得出结论,突破教学难点,理解圆锥的体积计算方法。看着孩子们听到老师的称赞,他们那开心的笑脸,我想:只有让孩子们成为学习的主人,老师只做引导者和合作者,引导得当,合作愉快时,那我们就真正起到了教书育人的作用,还有谁不想学习数学这门有意义的课程呢? 1

圆锥的体积教学反思14

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。

  1、复习迁移,做好铺垫

  由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。

  2、创设情境,引入新知

  数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。

  3、实验操作,推导公式

  圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。

  4、自学尝试,解惑答疑

  为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。

  圆锥的体积教学反思

  本节课《圆锥的`体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。

  例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,

  让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。

  充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。

圆锥的体积教学反思15

  【教材解读】

  《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

  【学情分析】

  高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。

  【教学目标】

  1. 通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。

  2. 培养学生的动手操作能力和探究意识,发展学生的空间观念。

  3. 通过生活中的故事,培养学生良好的思想品德。

  【重点难点】

  1.圆锥的体积公式的推导过程

  2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

  【教学策略】

  1.加强实践操作:

  《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2. 整合课程资源,创造性地使用教材;

  数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。

  3.鼓励学生独立思考,引导学生自主探索,合作交流。

  在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。

  【教学过程】

  一、创设情境,引发猜想

  1.播放录像。

  夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  二、自主探索,操作实验

  同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  4. 推导公式。

  同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)

  5. 问题解决。

  同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?

  三、运用公式,解决问题

  1、教学例3。

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)

  2. 学生尝试计算,指名板演,集体订正。

  汇报:(1)沙堆底面积3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  四、实践应用,拓展深化

  1、填空。

  1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是( )立方米。

  2)一个圆柱钢材能溶铸成( )个与它等底等高的圆锥体。

  2、判断。

  1)圆锥体积是圆柱体积的1/3。( )

  2)圆柱体积一定比圆锥体积大。( )

  3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1( )

  4)圆锥体积等于和它等底等高的圆柱体积的1/3。 ( )

  3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?

  4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的'体积吗?

  5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?

  五、质疑问难,总结升华

  通过这节课的学习,你们有哪些收获?

  【板书设计】

  圆锥的体积

  1/3

  V=1/3Sh

  例3

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆 沙子大约多少立方米?(得数保留两位小数)

  (1)沙堆底面积 3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积 1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  【教学资源】

  义务教育课程标准实验教科书教师教学用书

  【教学反思】

  今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:

  1.大胆猜测,培养猜测意识

  假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

  2.操作验证,培养科学的实验观。

  数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。

  3.重视课堂资源的生成

  教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。 总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。

  【教学评析】

  1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

  2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。

  4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

  5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。

  6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。

  《圆锥的体积》课堂实录

  一、创设情境,引发猜想

  1.播放录像。

  师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?

  生:我觉得小雅上当了,小林的雪糕小。

  师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?

  生:公平。

  生:我觉得还是不公平,小雅还是吃亏。

  师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?

  生:四个。

  生:五个。

  生:三个。

  师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手) 生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)

  师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?

  生合:想。

  师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)

  二、自主探索,操作实验

  师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  师:下面请各个小组同学汇报你们是怎样实验得出结论的。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)

  师:你们发现了什么?

  生:我们发现圆柱和圆锥的底面积相等高也相等。

  师:这用四个字概括就是“等底等高”。

  生:我们也发现圆柱和圆锥等底等高。

  师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。 生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?

  师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?

  生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)

  生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)

  师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆

【圆锥的体积教学反思】相关文章:

圆锥的体积教学反思04-13

《圆锥的体积》教学反思04-27

《圆锥的体积》教学反思02-10

《圆锥的体积》数学教学反思03-24

关于圆锥的体积的教学反思03-27

圆锥的体积教学反思(精选3篇)03-30

圆锥的体积教学反思15篇04-06

圆锥的体积教学反思(通用15篇)04-16

圆锥的体积优秀的教学反思(精选5篇)05-19

Copyright©2013-2024www.hzcy56.com版权所有