平面直角坐标系的课后教学反思

时间:2022-10-22 20:36:46 教学资源 投诉 投稿
  • 相关推荐

平面直角坐标系的课后教学反思范文(通用7篇)

  身为一位优秀的教师,我们的工作之一就是课堂教学,教学反思能很好的记录下我们的课堂经验,写教学反思需要注意哪些格式呢?以下是小编为大家整理的平面直角坐标系的课后教学反思范文(通用7篇),仅供参考,大家一起来看看吧。

平面直角坐标系的课后教学反思范文(通用7篇)

  平面直角坐标系的课后教学反思1

  作为教师在教学中通过不断地反思,来提高自己的教学水平,积累自己的教学经验。下面我针对自己的“平面直角坐标系”这节课做一总结和反思。

  “平面直角坐标系”反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象,且贴近他们生活的问题情境。

  “平面直角坐标系”是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从生活实际背景开始,学生们从所设置的练习入手,进入本节的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题改编到生活当中,以增加发散的成分和探究的因素。

  首先我通过创设情境,如何确定同一直线上的点的位置呢?让学生小组讨论,全班交流,通过复习数轴,利用数轴这一工具把数和点一一对应起来。不在同一直线上的三个点的位置如何确定呢?引起学生兴趣后讨论,给学生介绍平面直角坐标系的有关知识。

  ①平面直角坐标系的构成?

  ②轴与轴把坐标平面分成几个部分?它们分别叫什么?

  让学生动手画一个直角坐标系,建立有序实数对与坐标平面内的点的对应关系,然后再通过练习,让学生掌握已知点求坐标和已知坐标描点的技能,领悟平面直角坐标系中点与有序数对的一一对应关系。通过小组讨论:

  ①坐标轴上的点的坐标有什么特征?

  ②各个象限内的点的坐标有什么特征?

  ③横坐标或纵坐标相等的点有什么特征?

  ④各个象限中角平分线上的点的坐标有什么特征?

  新课程强调转变学生的学习方式,改变以往单一的、被动的接受式的学习,倡导构建具有“自主、合作、探究”特征的`学习方式。因此,我在这节课的教学设计中,充分挖掘贴近学生实际生活的素材,在实际问题情境中抽象出平面直角坐标系的概念,进而去探究点在平面直角坐标系中的特征,加强数学与实际的联系,让学生体会数学在生活中的广泛应用,激发学生的学习兴趣。在教学过程中,积极尝试小组合作学习,鼓励学生的自主探究和合作交流。培养学生在自主学习中发现问题、提出问题的能力,启发学生养成与同学合作交流,在合作交流中陈述自己的意见的习惯。这样,不仅激发了学生学习的兴趣,调动起学生学习的积极性,而且增强了学生的集体荣誉感。

  通过这节课小组合作交流,发现学生特别积极活跃,学生与学生之间的相互交流,使每一位学生都有均等的参与交流展示的机会。我感到非常高兴,由于运用“独学、对学、群学”的学习方式,不仅为学生自主发展拓展了空间,而作为教师已不必告诉他们应当学什么东西,学生已经有了兴趣学习更多的知识和探究更深入的问题的强烈愿望。

  然而,由于受学习习惯的影响,以及课堂组织还不是很到位,导致小组合作交流中还存在着一些问题:

  (1)、从学生的参与情况来看,有部分小组成员没有积极参与到交流过程中,把自己作为个体孤立起来;

  (2)、从交流的结果看,在小组交流后进行班级交流,学生反馈出来的还不是小组合作交流的结果,而是学生个人的想法。

  (3)、由于把课堂放手给了学生,收的不好,时间上没有把握好,导致练习不够。

  针对以上存在的问题,在今后的教学中将采取一些改进措施:

  (1)、教学中要尽量激发学生参与的积极性,引导学生从交流中体验合作的快乐;

  (2)、积极引导学生掌握一些基本的合作交流技能,让每个学生都有机会说出自己的想法和展示自己,引导小组成员互相评价;

  (3)、根据学生的实际和教材的特点,尽量创设合作交流的机会,加强小组同学之间的互动,培养学生的情感交流和合作意识。

  (4)、加强课程环节的连贯性。该收则收。

  平面直角坐标系的课后教学反思2

  在本节课的设计过程中还存在一些不足,比如:

  1、整个教学活动中,老师可以适当进行“一题多变”、“一题多解”、“一法多用”。这样在夯实基础的前提下,善于将学生从思维定势中解脱出来,养成多角度、多侧面分析问题的习惯,以培养思维的广阔性、缜密性和创新性。对于教材中所列举的例题、习题,不能就题做题,要以题论法,以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将试题的知识价值、教育价值一一解剖,达到做一题、会一片,懂一法、长一智。

  2、思考题是为后续学习需要设置的,由于时间关系没有让学生仔细读题,还好这个题事先已经考虑到,而在练习提单中准备。思考题是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的'是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点坐标的变化。

  3、一般意义上的成绩较好的孩子受到的关爱与鼓励较多,成绩后进的孩子受到的批评与压力大些,期待得到帮助的份额大。“好孩子是夸出来的”、“脆弱的禾苗需要多一份阳光与温暖”、“对孩子,多一份期许,少一分责备”借助这些教学名言,教师在教学中能带给孩子们鼓励和自信,但从学生表情和回答问题中,却没有很好的洞察到那些最需要帮助的群体。

  平面直角坐标系的课后教学反思3

  这一星期我们针对平面直角坐标系的内容进行了讲解。

  这节课的知识点比较多,对于刚刚接触平面直角坐标系学生来讲是比较难理解的,如果学生不是从“形”的角度去理解,往往就会变成机械的记忆了,光靠机械地记忆那是远远不够的,怎么样让学生更形象更值观点地理解本节课地知识点则成为了这节课设计时的难点。本节课中,我让学生在教室中以第四排同学为X轴,以中间的空行为Y轴建立直角坐标系,将每个学生看作是一个点,让学生说出自己的坐标,从位置之间的关系感受坐标之间的内在联系,这样既能让知识的发现过程更直观更形象,又和学生的实际生活结合了起来。

  首先,我让同一列学生报出自己的坐标,思考他们的坐标有什么样的关系,再让同一排同学报出自己的坐标,思考它们的坐标之间的'关系,设计这个环节主要是让学生感受到同一列的学生的横坐标相同,同一排的学生的纵坐标相同,为后面发现对称及平移的点的坐标的关系做下铺垫。然后以游戏的形式分别找出两个关于x轴、y轴及原点对称的两个同学分别报出他们的坐标,思考他们坐标之间的关系,实际教学中学生结合他们得位置关系很快就发现了规律。接着通过一定的情境引入位置的前后左右平移,让学生通过位置的平移感受点平移前后坐标的关系。学生在整个活动过程中不仅仅探究出本节课的所有知识,还能从“形”的角度理解和解释知识。

  平面直角坐标系的课后教学反思4

  《平面直角坐标系》这节课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。

  本课主要还是以书本上的步骤为主,讲授直角坐标系的相关知识,通过确定平面内一点P来引入平面直角坐标系,并且阐述要在平面内表示某个点的位置要用一对有序实数对来表示,即点的坐标。这个过程既让学生理解了直角坐标系的相关概念,同时也让学生明白了如何在一个平面内将某个点的位置用坐标表示出来。

  我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以。我设计了4组练习,主要是:

  ①找出所给的点的坐标;

  ②根据所给的几个特殊点归纳出在横轴和纵轴上的点的坐标的特征;

  ③请一位同学在所给的坐标平面上指一个点,另一个同学说出它的坐标,答对了这个同学也可以请另外的`同学说出他所指的点的坐标,以此类推;

  ④现实运用,在班级中建立直角坐标平面,请学生自己所在的位置的坐标。

  本课灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏活动等。调动了学生学习的积极性,充分发挥了学生的主体作用。通过游戏活动让学生再次感知点和数的对应关系,然后上升到理性,从而突破了难点,效果应该很好,体现了素质教育要求。课堂拓展了学生学习空间,给学生充分发表意见的自由度。

  平面直角坐标系的课后教学反思5

  《平面直角坐标系》这节课属概念性教学,且与生活联系较大,因此在教学上比较容易,为更好地体现“以学为主、当堂达标”的教学思路,所以我的这节课是学生在结合预习学案提前预习基础知识的基础上的一节展示课。为更好的创新教学模式,我对自己的这节课反思如下:

  一、教学上我尝试了先学后教,以学定教的教学思路。

  首先,我预设到了学生可以预习好的基本概念如坐标系的`概念及点的坐标的表示法等,同时也预设到了象限及不同象限点的坐标特点等知识抽象性,因此在预习案设计上能结合学生实际由易到难地引导锻炼学生对基础知识的理解和学生动手能力的培养。而在展示课上我注意了学生对基础知识的理解巩固和拓展,使学生的数学思维得到了很好的培养和训练。

  二、教学中我利用了多媒体课件培养学生数形结合思想促进教学。

  本节课是学生在初中阶段的第一节代数几何综合性的开端课,为更好地帮助学生理解基础知识进而形成技能,特别是点坐标的确定方法及点到坐标轴的距离等知识的理解,多媒体课件起到了很好的促进作用。

  三、教学中我采用了以“学生展示——教师讲解———应用拓展”的教学思路组织教学。

  为更好地发挥学生的主体地位,关注每一位学生的发展,课堂上我注重创设情景让学生先展示后讲解的方式组织教学,并把相关的基础训练结合到每个环节中,使不同的学生得到了一定的发展。同时,为更好地调动学生的积极性,我还创设情景组织游戏活动,从而让学生感受到生活中处处有数学。通过座位游戏活动让学生再次感知点和数的对应关系,然后上升到理性,使学生的知识得到了拓展应用,效果应该很好,体现了素质教育要求。

  虽然我努力备课组织课堂,也有很多不足。

  1、渗透拓展知识较多,知识细节多,使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性。

  2、课堂气氛不够活跃,对学生的课堂表达能力还需加强。

  相信我下次再上这节课的时候对于这节课的不足应该会有所改进。

  平面直角坐标系的课后教学反思6

  期末复习课“平面直角坐标系复习”,安排了一课时复习。课前我们精心设计了教案学案,安排前置学习内容,学生课前进行了前置学习训练。

  一、知识点归纳

  上课开始,由学生进行了知识点的回忆:1。有序数对;2。平面直角坐标系;3。特殊位置的点的坐标特征;4。用坐标表示地理位置和用坐标表示平移;5。点到坐标轴的距离和坐标平面内几何图形的面积。老师在学生复习的基础上,提出:除了平面直角坐标系内有序数对的意义还有一些特定的含义,(如前置学习1如果用(7,2)表示七年级二班,那么八年级三班可表示成(),(9,4)表示的含义是()。坐标平面内有序数对与坐标平面内的点的一一对应,在研究问题时经常用到了数形结合的思想方法。

  二、难点交流

  结合前置学习的情况,给出足够的时间进行交流,提出:交流前置学习题的正确答案是什么;哪几道题的解题过程值得推荐;哪几道题是易错题及其解题注意点。明确了交流任务,学生交流讨论积极踊跃。学生的回答表现了学生知识理解和掌握的深刻。

  在交流哪几道题的解题过程需要一起研究时,多数同学推荐第15题,题目是:“已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是___”,由学生介绍解题书写过程后,提出了OB等于a的绝对值,老师补充:已知点A(4,6),B(3,0),在x轴上求一点C,使△ABC的面积等于12。重点强调了求出BC=4后,由B(3,0)求出的C点有两种情况C(7,0)或(-1,0)。

  学生畅谈在解题时的注意点,4、6、7、8题的距离问题,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值;4、8、10、15题两解问题,提醒我们思考要严谨;3、5、9题等题目的有序数对的有序问题;14题等题目的审题仔细的问题,点在平移时“左右减加横坐标,上下加减纵坐标”,补充:在△ABC中,A(2,-3)平移到A′(-1,2),求B(3,2)平移后的点B′的坐标,已知平移后的点C′(-4,6),求平移前的点C的坐标。从而关于点的坐标平移还要考虑平移前和平移后。

  在协进学习的教学时,学生独立完成后,侧重讨论了1、2、4题所涉及的知识点和解题思路,学生从讨论后认识到,第1题用到了有理数的.加法、乘法法则;第4题是“几个非负数的和为零,则每个加数都为零”的典型题。再由学生上黑板板演并讲解6、7、8三题。学生对6(1)(3)的两种情况有了更深刻的认识。

  提升学习安排的面积问题,重在三角形面积的分割重组,学生提出了多种分割补形方法,通过学生的书写示范,规范了书写要求。

  三、反思提高

  安排教学活动要具体和可操作:学生交流一定要有事可做,在交流前置学习内容时,提出的“正确答案”、“解题过程”、“推荐易错”三个问题保证了学生交流的热烈和有效。

  适当提升使学生复习课也有新收获:在学生推荐协进学习15题后,及时补充上面已知面积求C点坐标,学生进一步感受数形结合和方程思想;交流协进学习14题,增添求平移前和平移后的点的坐标,进一步体会注意平移的“左右”、“上下”和“前后”。

  知识回顾让学生有成就感:协进学习第1、2、4、6、7、8等题目的解题思路和所涉及的知识的回顾,让学生可以以更高的视点分析题目,条件许可还可以由学生进行题目的变化和引申,增加学习数学的兴趣。

  平面直角坐标系的课后教学反思7

  平面直角坐标系是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从学生自主学习开始,学生们从所设置的问题入手,在平面中描述出点的位置,以问题引出知识,进入本节课程的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题拓展到学生的生活当中,以增强学生的探究意识。

  整个教学过程以问题情境,将小黑板、多媒体综合应用,教给学生如何解决数学模型,建立“问题→自主学习→合作交流→探究总结”的解决数学问题的思维模式,让学生在问题中学习,这是我认为可以在今后的教学中采用的教学方法。本节课教学立足于问题情境的创设,将原本枯燥的平面直角坐标系与现实生活紧密联系起来,在解决实际问题中学习知识;立足于知识的发现和发展,让学生能在情境问题中理解建立平面直角坐标系的必要性,应用平面直角坐标系去分析和解决实际问题;立足于知识和情感的教育,在知识教学的同时,对学生进行理想教育,又在本课结束前对学生进行人生观的教育。在教学中力求体现学生探究能力的培养,通过问题情境的设计,引导启发学生进行探究及自主学习,并及时地加以总结和反馈,尝试从多角度去体现新课程理念。

  在教学中,我们的习惯是“进行问题教育”——让学生带着问题走进教室,没有问题走出教室,教学中“懂的人问不懂的人”。通过这节课教学,我感觉学生能够提出一个问题比解决一个问题更重要,教师要让学生带着问题走进教室,更要让学生带着更多的问题走出教室,在课堂上激发学生的问题意识,加深问题的深度和广度,让学生努力形成自己解决问题的能力。

  本节课的巩固练习都是随着新问题、新知识一起设计的',让学生的学与练习紧密相连,从教学效果来看还不错,在教学中我设计了4组练习,主要是:

  ①找坐标;

  ②找点;

  ③象限内点的符号;

  ④综合运用。

  在练习中尤其是前3个练习是本节课的重点、难点,在教室里以学生的座位建立平面直角坐标系,让学生自己说出所在位置的坐标。让全体同学参与到活动中来,不仅活跃了课堂气氛,还能让学生加深体验点的坐标以及特征。

  本课采用了"创设情境—提出问题—解决问题—应用拓展"的教学过程。这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展了知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习方法,更好地利用所学知识解决问题。

  在本节课的教学过程中还存在一些不足:

  1、整个教学活动中,老师应该适当进行“一题多变”、“一法多用”。这样有利于将学生从思维定势中解脱出来,养成多角度、多方面分析问题的习惯,以培养思维的广阔性和创新性。对于教材中所列举的例题、习题,我们应该以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将体现试题的知识价值、教育价值,这样达到做一题、会做一类试题效果。

  2、思考题是为后续学习需要设置的,是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点的坐标的变化。

  3、数轴上点的坐标特征强化不够到位,并且教学内容稍大,有些前松后紧。

【平面直角坐标系的课后教学反思】相关文章:

平面直角坐标系的教学反思06-17

平面直角坐标系教学反思03-29

平面直角坐标系教学反思(精选11篇)07-24

平面直角坐标系教案(通用17篇)07-25

七年级数学《平面直角坐标系》教学反思(通用11篇)04-25

认识直角教学反思02-24

认识直角教学反思优秀11-03

课后的教学反思04-12

课后教学反思04-02

认识直角教学反思15篇02-24