《小数的意义》教学设计(15篇)
作为一名辛苦耕耘的教育工作者,时常需要用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。如何把教学设计做到重点突出呢?下面是小编为大家收集的《小数的意义》教学设计,欢迎大家分享。
《小数的意义》教学设计1
教学内容:
人教版义务教育课程标准实验教科书数学四年级下册第50-51页。
教学目标:
1、理解小数的产生和意义,认识小数的计数单位及进率。
2、通过抽象概括,培养学生初步的逻辑思维能力。
3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。
教学重、难点:
教学重点:概括小数的意义,认识其计数单位和进率。
教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。
课前准备:请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。
教学过程:
一、导入
1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?
2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。
3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。
二、新授
1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)
那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)
归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)
2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)
启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的数据写成以米为单位的小数,同桌互相检查评改)
归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)
3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的第一、第二、第三位上。各表示几个1/1000米呢?
引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)
(布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)
4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。
5、归纳概括。用投影仪显示下列问题。
在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?
表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?
像这种分母是10、100、1000……且相邻的计数单位的进率是10的分数,可以怎样依照整数的写法写成小数?
因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。
小数的 计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)
6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?
三、全课总结、质疑
四、巩固练习
1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的.小数是多少?
2、口答:判断对错,错的要订正。
(1)11/1000写成小数是0.011米。
(2)0.18是18个0.1。
(3)0.33的计数单位是百分之一。
(4)0.57表示百分之五十七。
3、抢答。(看到小数答相等的分数,看到分数答相等的小数)
0.5 16/100 0.25 4/1000 0.075
4、书面作业。(略)
5、机动题:在下面的○里填上“>”、“<”或“=”。
8/10○0.08 96/100○0.95
4角○0.4元
6、思考题:113毫米、15厘米用小数表示出来是多少米?
[评析:小数的意义是本节课的教学重点,由于小学生的年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:
1、充分感知,使学生明确小数的产生源于实践。
认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。
2、凭借表象。展开联想推理。
建立表象后,以表象为依托,通过观察米尺,联系 旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。
3、培养学生抽象概括的能力。建立新的认知结构。
教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:
(1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;
(2)通过小数的特征,建立抽象的概念——小数的意义;
(3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。
然后教师设疑:
(1)能直接写成小数的分数,它的分母是多少?
(2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?
(3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?
(4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。
4、把握训练内容,巩固强化新知。
练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运 作,从而有效地培养了学生良好的学习习惯。
同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。
《小数的意义》教学设计2
教学目标:
1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义,小数的意义教学设计。
2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。
3、经历探索小数意义的过程,了解小数在生活中的广泛应用。
教学重点:结合实际操作,使学生理解小数的意义,学会读写小数
教学难点:经历探索小数意义的过程。
教学准备:
自制课件正方形纸片、正方体模型
教学过程:
一、情景创设
课件播放歌曲《春天在哪里》
师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?
生:春天。
师:对,春天来了,瞧,(课件展示)花儿绽放了,蝴蝶飞来了,人们也纷纷走到了户外。看,画面上的老太太在读报纸呢,一直蝴蝶从她的身边飞过,它看到了什么呢?
课件出示:1千瓦时的电可以让电动车运行0.84千米。
师:谁来读一读这句话。
生:1千瓦时的电可以让电动车运行0.84千米。
师:0.84是个什么数?
生:小数。
二、合作探究
1、教学小数的`读写
师:你还会读其他的小数吗?
课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。
教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。
学生讨论后回答汇报。
教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。
师:打搅会读小数了,那你会写小数吗?
生:会。
课件出示零点四七四点一三十二点四零五
学生自由写--交流--集体订正。
2、教学小数的意义
师:大家既然都见到过小数,那想一想都是在哪里见到的:
生举例生活中的小数(超市的货架上、小票上、课本上等等)
师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?
生:1角。
师:说说你的想法。
生:、、、、、、
师出示正方形的纸,然后让学生图出0.1元。
生操作然后汇报。
师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。
师操作让学生回答表示的是多少元。
师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。
生操作后汇报
师:你知道0.01元是多少钱?
生:1分。
师:那1元里面有多少个1分呢?
生:100个。
师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。
0.03元呢?0.36元呢。
让学生用手中的正方形的纸片进行涂写、汇报。
展示0.25的图片,让学生写小数和分数。
借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。
师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。
三、课题达标
(课件)展示题目
采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。
四、课堂小结
师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
《小数的意义》教学设计3
教学内容:
小数的意义
教学目标:
1、理解小数在生活中产生的必要性。
2、经历探索小数意义的过程,了解小数在生活中的广泛应用。
3、在探索交流的学习过程中,体验数学学习的乐趣。
教学重点:两三位小数的意义。
教学难点:探究两三位数小数意义的过程。
教学准备:正方形卡纸
教学过程:
一、测量物体导入,了解小数的产生。
1、同学们,老师手中有一张四边形彩纸,你猜测一下它是什么图形?
2、那只是我们的猜测,怎样才能难我们猜测的结果呢?
生:用对折的方法(真善于思考)
师:还有其他方法吗?
生:测量
师:怎样测量。
生:四边长度是否相等。(用数据说话更有说服力)
师:同学们手中也有一张四边形彩纸,那我们就用刚才这名同学所说的测量四边长度的方法来验证一下它到底是什么图形。拿出尺子开始吧!把测量完的长度分别写在四边的括号里。(培养学生猜测、验证的数学思维)
师:同学们都量好了,谁来汇报一下你验证的结果。
生:是正方形,边长长度都是厘米。
师:是正方形吗?四条边的长度分别是多少厘米?我写在这好吗?
师:有和这名同学数据不同的吗?
师:怎么可能,大家都是正方形,你验证错了吧?
师:你真勇敢,在真理面前,不要向任何人低头。
师:观察这些数据你发现了什么?
生:有整数,也有小数。
师:同学们为什么会用到小数呢?
师:刚才我们在测量图形边长的时候因为长度不是整厘米数,所以我们用到了小数,在生活中还有哪些地方你也运用到了小数呢?
师:你们真是留心生活的孩子,老师这也搜集了一些,谁读给大家听。
课件出示很多情况。引出课题。(数学学习来源于生活实际。)
大家读得都很准确,在三年级我们对小数有了初步的认识,而在这一节课,我们要研究一下小数的意义。板书。
师:我今天也带来了几个小数,请大家注意看。
师:你们猜接下来老师要写哪个小数。
板书:
师:你们是怎么猜到的呢?
二、探究一位小数的意义
1、让我们来看这个小和0.1,它表示什么?
师:刚才我们进行验证的那张正方形纸,我们把它看作是1,那这样的2张呢,10张呢?
师:如果想用这张纸表示出0.1这么大的`一块,你估计一下能有多大呢?用手指给大家看。
师:这个0.1到底有多大呢,就用你手中的正方形纸画一画涂一涂表示出0.1那么大小的一块。
生:汇报。
师:现在谁能说说0.1所表示的意义?
生:把正方形平均分成十分,表示其中一份的数就是0.1也就是十分之一。
师:只能是正方形平均分吗?
师:所以0.1也就是十分之一。
师:仔细观察这个正方形,除了0.1你还看到了哪个小数。0.9也就是十分之九。
师:怎么得到的呢?
师:那么0.1和0.9合起来就是多少?
师:看这些小数,你发现了什么呢?
这些一位小数就是表示十分之几。
三、认识两位小数的意义。
1、如果要表示0.01那么大小的一块,你会吗?谁来说说你的想法。
生:把这个正方形平均分成100份。表示其中的一份。
师:你们认为是这样吗,谁再来说一说。
师:(教师演示这样的过程)
师:谁来说说0.01所表示的意义呢?表示百分之一。
师:你还看到了哪个小数呢?百分之九十九。
3、下面请同学们自己在有一百个格子的正方形上涂一涂,自己创造出一个小数来。
师:哪位同学说说你涂了几格,阴影部分用小数表示是多少?
师:你创造的小数是多少,猜猜他涂了多少个格子。那空白部分应该是多少呢?
4、用这一环节引出0.4和0.40。区分意义的不同。
这样的两位小数表示百分之几,在分法上不同,所表示的意义也是不同的。
四、认识三、四位小数的意义。
1、我们认识了一位小数表示十分之几,两位小数表示百分之几,那三位小数呢?四位小数呢?
师:0.001表示千分之一0.234表示千分之二百三十四
师:那千分之31写成小数是多少?
2、我想表示出一个很大的三位小数,你认为应该是多少?
4、它和谁合在一起才会是1呢?
五、巩固应用。
1、把一米长绳子分成10份,分别用小数分数表示其中的4份。
2、解释下面题中小数的意义。
周末天天去一个距家有0.3千米的超市买了一支铅笔用了0.3元,来回路程共用去了0.3小时。
0.3千米=()米0.3元=()角0.3小时=()分
四年级数学《小数意义》教学设计4
教材来源:义务教育教科书,人民教育出版社xxxx年版
教学内容来源:小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:《小数的意义》
课时:第一课时
授课对象:四年级学生
目标确定的依据:
1.课程标准相关要求
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
评价设计:
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
《小数的意义》教学设计4
教学内容:
国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。
教学目标:
1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。
教学重点:
理解小数的意义。
教学过程:
一、交流信息,引入课题
1、在三年级时,我们认识了一些小数,你能说出几个吗?
2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?
(1)一块橡皮元,一本练习本元。
(2)一张信封元。
(3)王琳的身高米,体重千克。
(4)刘翔在国际田径超级大奖赛中,以秒的成绩刷新世界记录。
(5)一枚1分硬币的厚度大约是米。
(6)人体的正常体温是°°C。
(7)“神舟六号”在太空飞行时距地球表面最远的高度大约是千米。
3、引入课题
这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?
根据学生提出的问题揭示课题。
二、探究新知
1、学习小数的读法
小数怎么读?谁能把信息中的几个小数再读一读?
能发现小数是怎么读的吗?
让学生发现:小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。
出示几个小数,让学生读一读:
2、探究小数的意义和写法
(1)如信息中的、、元这些小数是怎么来的?
小组内回忆6角写成元的过程。
那5分为什么可以写成元?同桌商量商量。
引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?
学生尝试说说7角5分转化为元的过程。
那6角8分可以写成几元?
(2)米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)
引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是米。
以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。
组织交流。
(3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?
把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。
组织全班交流。
3、抽象概括:
仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。
引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?
4、教学“试一试”
先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。
三、练习拓展
1、把听到的小数记录下来。
早晨6点30分,小明从米宽的.小床上起来,挤了米长的一段牙膏,用了小时刷牙洗脸,喝了一杯升的牛奶,吃了一只面包,背起千克的书包,飞快地向离家千米的学校跑去。
指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。
2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)
铅笔3角小刀8分直尺5角9分练习本76/100元
3、把你认为长度相同的找出来
4毫米米4/1000米米4厘米4分米4/10米
4、估价:一筒薯片的价格在5元~6元之间。
5、把课前收集的小数信息,挑一个用今天学到的知识介绍给同桌听。
四、课堂小结
今天,我们进一步认识了小数,你有哪些收获?
在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。
反思:
我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。
1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。
2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成元后,让学生在小组里商量商量5分为什么可以写成元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。
3、在解决实际问题中巩固知识,让学生感受数学的魅力。
本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。
《小数的意义》教学设计5
教学目标:
1、知识与技能:理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。
2、过程与方法:结合具体事物,经历自主探索小数乘小数的的计算方法的过程。
3、情感态度与价值观:积极参加数学活动,培养迁移类推能力,获得借助计算器和运用自己的知识解决问题的成功体验。
教学重点:
掌握小数乘小数的方法,会熟练的进行笔算。掌握小数末尾的0的处理方法。
教学难点
因数的小数位数与积的小数位数的关系。
教学准备:
多媒体课件
教学过程的设计
一.情境导入
1、师:同学们,如今我们的生活水平有了很大的提高,住房条件也有了很大的改善,很多同学都住进了新房,聪聪家最近也换了套新房,现在老师就带你们去看看。瞧!这就是聪聪家的客厅。(课件出示)通过观察平面图,你想知道什么?能提出什么数学问题?
(设计意图:直接导入,课件展示聪聪家的客厅平面图,容易激发学生学习的兴趣,进而诱发学生主动解决问题的内驱力。)
2、生提问题。
3、师:同学们提出了很多有价值的问题。如果要求的'聪聪家客厅的面积有多大,该怎样列式呢?(板书:4.8×3.6)观察算式的两个因数,你发现了什么?
生:算式的两个因数都是小数。
生:两个因数都是一位小数。
4、师:同学们观察的很仔细,今天我们就来探讨“小数乘小数的计算方法”。板书课题:小数乘小数
(设计意图:从计算房间的面积这一实际问题引入,容易激发学生的学习兴趣。小数乘小数的重点是小数点的书写位置,让学生观察题中因数的特点,主要目的是为了确定积中小数的位数打基础。)
二、探究新知
1、推导笔算方法
①、提出估算要求,师:计算之前我们先估算一下,聪聪家的客厅面积大约是多少平方米?让学生说一说自己是怎样想的?
生:把3.6看作4,把4.5看作5因此:3.6×4.8≈20
也就是说聪聪家客厅的面积不到20平方米。
(设计意图:培养学生估算的意识,使学生养成“先估算,在计算”的习惯,提高计算的正确率,未确定竖式计算结果做铺垫。)
②、提出竖式计算的要求,讨论两个因数都是一位小数怎么办?
教师板书:
4.8×3.6
1、回忆小数乘整数的计算方法.
2、提问:两个因数都是一位小数怎么计算?可以转换成整数乘法来计算吗?
3、让学生说出算理,独立试一试,指名汇报答案。学生上台板演。
4、确定积的小数点的位置,并说明理由。
(设计意图:“问题讨论”是学生把已有的知识迁移到新知识的过程,是理解算理的过程,是发展学生教学思维的过程。)
③、分析算理。
我们一起在原式上做一做。(边说边板书)
思考:1.乘数中的两个因数是如何转化成整数计算的?
2.用整数相乘的方法算出48×36的积以后怎么办?
3.要得到原来的积,应该怎么办?
4、小数点应该点到哪里呢?
教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1728除以100,从积的右边起数出两位点上小数点。所以3.6×4.8的积是两位小数。
④(教师出示课件),显示算理的全过程。指名学生结合竖式,再次说出小数乘小数的计算方法,(设计意图:让学生经历用竖式计算方法的形成过程,掌握计算方法。)
2、沙发的占地面积,①、提出问题:刚才我们求出了聪聪家客厅的面积,聪聪家的客厅里还有一个漂亮的沙发,(出示课件)生观察图,说出了解到的信息和要解决的问题。
②师:求沙发的占地面积是多少平方米,该怎样列式呢?
学生可能说出不同的算式,教师肯定并板书。
0.85×1.8
师:同学们看一看这个算式的两个因数,你发现了什么?
生:这个算式中的两个因数都是小数。
生:两个因数一个是一位小数,一个是两位小数。
(设计意图:了解题中的数据信息和问题,列出算式,了解因数的特点,为竖式计算做准备)
③师:这样的两个小数相乘,用竖式计算怎样算呢?(教师强调小数乘法列竖式是不要把小数点对齐,要把因数的末尾数对齐。)
教师板书竖式:
生:学生试算,指名学生到黑板上板演,并让板演的同学说一说自己计算的方法。
学生完成板书:
师:用整数乘法的方法计算出积以后怎么办?
生:回答,师在竖式中点上小数点。
师:告诉学生在横式中写得数时,根据小数的基本性质,小数末尾的0可以不写。
完成横式:
0.85×1.8=1.53(平方米)
④师:(出示课件)再次显示小数乘法的计算方法与过程。
(设计意图:让学生自己尝试计算,既检验学生掌握计算方法的程度,用便于解决计算中数学问题,提高学习效率。)
⑤师:用竖式算的对不对呢?请同学们用计算器检验一下。
学生计算交流。
(设计意图:通过自己检验计算结果,确信计算方法的正确性)
三、归纳总结
让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。师生共同总结归纳小数乘小数的计算方法。
出示问题:观察比较,总结算法。
1、例题中的两个因数分别是几位小数?积是几位小数?
2、通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?
3、你知道计算小数乘小数时,要先干什么,后干什么吗?小数点的位置是如何确定的?
师总结算法:小数与小数相乘,先按照整数乘法的算法求出积,再看因数中一共有几位小数,就从积的右边数出几位,点上小数点。(课件播放)
(设计意图:在观察、讨论的过程中,发展学生的数学思维,经历有个性的经验提升为数学方法的过程。)
师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,根据这种关系,我们不计算,就能判断积的小数位数。
四、尝试应用
1、聪聪家的客厅里还有一个漂亮的茶几,(出示课件)生观察图,说出了解到的信息和要解决的问题。
师:求茶几的占地面积是多少平方米,该怎样列式呢?
学生说,教师板书:0.45×0.9=
师:估计一下,0.45×0.9的积有几位小数?为什么?
生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。师:请同学们试着用竖式计算。
学生自主笔算,教师巡视,个别指导。请一名好学生板演。请板演的同学说
一说确定小数点时是怎样想的。
生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。
(设计意图:让学生用已有的知识尝试解决问题,先估计积有几位小数,为自主计算打基础。让好学生板演,减少教师板书的时间,提高学习效率。)
2、师:说的很好,下面我来考考你们。
出示“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。
师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?
生:看两个因数一共有几位小数。
(设计意图:让学生在练习中熟练应用并巩固因数中小数位数与积的小数位数的关系。)
五、全课小结:通过今天这节课的学习,你有什么收获?
《小数的意义》教学设计6
教学内容
苏教版五年级上册第28-29页。
教材分析
在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。
学生分析:
这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。
设计意图:
本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。
(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。
(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……
(3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。
实施过程
一、前置学习,初步感悟。
1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。
2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)
3.全班汇报:
第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。
第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。
二、课中操作,沟通联系。
1.理解一位小数的意义
(1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?
(2).那么老师这里有一张正方形纸,如果把这张正方形的纸看作1,怎么在这张纸上表示0.1的大小。
拿出正方形纸,分一分,涂一涂表示0.1的大小。
展示交流,看看这些同学的'作品,发表你的意见。
那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?
虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。
(3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。
(4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。
(5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?
(6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。
这些小数都是一位小数,一位小数表示什么意义呢?
把1平均分成10份,表示其中的几份,也就是表示十分之几。
2.理解两位小数的意义
(1).那0.01的意义是什么呢?
(2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。
把这张正方形纸平均分成100份,涂其中的1份表示0.01。
(3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。
0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01
(4).课件出示,你看到哪2个小数,分数是什么?
0.28和0.72合在一起是多少。
这些小数都是两位小数,两位小数表示什么意义。
把1平均分成100份,取其中的几份,也就是表示百分之几。
3.理解三位小数的意义
(1).照这样看三位小数表示?千分之几。
(2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。
0.012写成分数是多少?写成小数是多少?
4.拓展四位小数、五位小数
(1).那四位小数表示什么呢?0.0123表示哪个分数。
(2).五位小数表示什么意义?写成小数是什么?
5.概括小数的意义
那什么是小数的意义呢?
引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
三、分层练习,实质理解。
1.对口令
看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。
规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。
结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。
2.写小数
刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?
这个图形又可以用哪个小数表示?如果要表示2.43怎么办?
3.数轴上得小数
看、这是一条数轴,这两个点可以用哪个小数表示。
把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。
4.通过本节课的学习你有什么收获?
虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识
《小数的意义》教学设计7
教学内容:本节课教学内容是新人教版本四年级下册第四单元P32页。
1、教材分析
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
二、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的`顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
五、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是( 10 )
生:因为我们刚刚在黑板上标记了
生:进率是100
生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.
(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米 1 计数单位
1/10米=0.1米 十分之一 0.1 一位小数
1/100米=0.01米 百分之一 0.01 两位小数
1/1000米=0.001米 千分之一 0.001 三位小数
1/10000米=0.0001米 万分之一 0.0001 四位小数
五、教学反思
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。
一、运用多种手段,提高教学实效
本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。
2、情景导入,回到最初
借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。
3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
六、案例研讨
《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。
1、回归本质,回到最初
在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。
2、数与型结合,便于学生理解
两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。
3、概念性的教学是否可以全面放开,让学生自己去发现、去总结
既然是教学,肯定会有不完美的地方,概念性质的教学多数都是教师满堂灌的形式。在主张把课堂还给学生的情况下,能否大胆的放手,让学生自己去发现、去找凭找据、去总结、去运用呢?
附:评课老师简介
何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。
《小数的意义》教学设计8
教学目标:
(一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(三)培养学生的观察、分析、推理能力。
教学重点和难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.
教学过程:
一、小数的产生。
1、谈话导入
问:在三年级时我们初步认识了小数,你能说一个小数吗?
(根据学生的回答,选一部分板书)
问:你还知道小数的哪些知识?
2、那小数是怎样产生的呢?(出示课件)
①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?
②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)
二、小数的意义。
1、认识一位小数
师:0.1米还可以怎么表示?
生1:用分数表示是1/10米
生2:1分米
师:你是怎么想的?
生:把1米平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是0.1米。
师:0.3米是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:0.8米是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:像0.1、0.3、0.8……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。
(板书:一位小数)
2、认识两位小数
师:0.01米还可以怎么表示?
生1:用分数表示是1/100米
生2:1厘米
师:你是怎么想的?
生:把1米平均分成100份,每一份是1厘米,用分数表示是1/100米,用小数表示是0.01米。
师:0.05米是几厘米?用分数表示是多少米?(生略)
师:0.09米是几厘米?用分数表示是多少米?(生略)
师:像0.01、0.05、0.09……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。
(板书:两位小数)
3、认识三位小数
师:0.001米还可以怎么表示?
生1:用分数表示是1/100米
生2:1毫米
师:你是怎么想的?
生:把1米平均分成1000份,每一份是1毫米,用分数表示是1/1000米,用分数表示是1/1000米。
师:0.007米是几毫米?用分数表示是多少米?(生略)
师:0.012米是几豪米?用分数表示是多少米?(生略)
师:像0.001、0.007、0.012这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)
师:分母是几的分数能写成四位小数?(1000)
分母是几的分数能写成五位小数?(10000)
师:依次类推(板书:......)
4、概括小数的意义
师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成0.1;
5/100可以写成0.05;12/1000可以写成0.012。
那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?
师:下面分小组说一说你们各自的想法。
(汇报讨论结果。)
组1:分母是10、100、1000的分数可以用小数来表示。
组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。
组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。
小结:我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。
这就是。(板书:小数的意义)
5、认识小数的计数单位。
师:0.3里面有()个0.1 0.8里面有()个0.1
生1:0.3里面有(3)个0.1
生2:0.8里面有(8)个
师:像0.3、0.8这样的一位小数都是由许多个0.1组成的,我们就说0.1是一位小数的计数单位,用分数表示是十分之一。
师:那么你们猜一猜,两位小数的计数单位是什么?
生:0.01是两位小数的计数单位,用分数表示是百分之一。
师:那三位小数的计数单位是(?)
生:0.001(千分之一)
师:那四位小数的计数单位是(?)
生:0.0001(万分之一)
师:依次类推(板书:......)
6、认识进率
(结合板书)一位小数的计数单位是0.1,两位小数的计数单位是0.01,三位小数的计数单位是0.001,那0.1里面0.1有()个0.01
0.1里面有()个0.001(课件出示)
生:0.1里面有(10)个0.01
0.01里面有(10)个0.001
师:为什么0.1里面有(10)个0.01,0.01里面有(10)个0.001,同学们可以结合板书去思考?(四人一小组进行讨论)
生:讨论
生:汇报
生1:0.1米=1分米0.01米= 1厘米1分米= 10厘米
所以0.1里面0.1有(10)个0.01......
师:0.1里面有(10)个0.01,0.01里面有(10)个0.001,依次类推(板书:......)
用一句话可以怎么概括?
师:(课件出示)每相邻两个计数单位之间的进率是10
师:(结合板书)0.1里面有(10)个0.01,0.01里面有(10)个0.001,那0.1里面有()个0.001?
生:0.1里面有()个0.001?
师:你们是怎么想的?生:......
四、巩固练习。
师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)
师:请看大屏幕,第一关(课件出示)
1、填一填(书51页做一做)
2、哪两只手套是一副?用线连一连。(书55页第2题)
第二关
3、在()里可以填几
()个0.01是0.1 0.8里面有()个0.1
0.35里面有()个0.1和()个0.01组成的
0.2里面有()个0.1,有()个0.01,有(),个0.02
4、想一想
1元4角2分=()元2.56元=()元()角()分
35厘米=()米=()分米0.68米=()分米=()厘米
第三关
5、在括号里填上适当的分数和小数
五、课堂小结。
这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?
四年级数学《小数意义》教学设计6
教学内容:
人教版数学四年级下册P50-51
内容分析:
本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”
教学设想:
三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。
教学目标:
1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的`意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。
2、认识小数的数位和计数单位。
3、知道小数每相邻两个计数单位间的进率是10。
教学重点:
理解小数的意义
教学难点:
小数每相邻两个计数单位间的进率是10
教学过程:
课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。
下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果
课件出示学案内容
一.复习导入
(出示一位学生的分类结果)
师:请这位同学来回答,你把这些小数分成了几类?
生:三类
师:你是怎么想的?
生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类
师:你们分的和他一样吗?
小数点右边的部分是小数部分(板书补充数位顺序表)
小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?
生:两位小数
师:三位的呢?
生:三位小数
师:今天我们一起来探究小数的意义(板书:小数的意义)
【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】
二、新授
(一)认识一位小数
1、出示尺子图
师:看这幅图,你是怎样填的?
生:分数:1/10米,小数:0.1米
师:你是怎么想的?
生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。
师:谁再来说一说?
2、出示面积图
师:再看这个图,你还能用分数和小数表示吗?
生:分数是1/10,小数是0.1
师:为什么它也能用0.1表示?
生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.
师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1
(出示课件:1/10=0.1)
3、出示第二幅面积图
师:那现在涂色部分是多少?
生:分数是3/10,小数是0.3
师:0.3表示什么意思?
生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3
师:0.3里面有几个0.1?
生:0.3里面有3个0.1
4、出示
师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义
(同桌互说)
汇报:
师:第一个谁来说?
生:分数是6/10,小数是0.6
师:0.6里面有几个0.1?
生:0.6里面有6个0.1
师:第二个是多少?
生:分数是9/10,小数是0.9
师:0.9表示什么?
生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9
师:0.9里面有几个0.1?
生:0.9里面有9个0.1
5、课件出示
师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?
生:分母都是10,都是平均分成了10份得到的
师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?
生:一位小数
师:十分之几的数用一位小数表示(课件出示)
给同桌读一读这句话
6、课件出示
师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?
出示
生:10/10、1
师:十分之十就是1
1里面有几个0.1?
生:1里面有10个0.1(课件出示)
7、出示
师:这个图怎么表示?
生:1.2
师:1.2里面有几个0.1?
生:1.2里面有12个0.1(课件出示)
8、出示
、
师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)
0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)
十分之一所占的数位就是十分位(补充数位顺序表)
师问:十分位的计数单位是什么?
生:十分之一
师:十分位所占的数位是?
生:十分位
师:老师在说一个小数:0.8
8在哪一位?(生:十分位)
它的计数单位是什么?(生:十分之一)
有几个这样的计数单位?(生:8个)
【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】
(二)认识两位小数、三位小数
1、自主探究
师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?
接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。
先请一位同学读一读
学生活动
2、练习反馈
师:同学刚才讨论的很积极,这几个问题都解决了吗?
那老师出几个问题考考大家
3、出示
师:涂色部分是多少?
生:分数是1/100,小数是0.01
师:你怎么想的?
生:把正方形平均分成100份,其中的一份是1/100,小数是0.01
师:谁再来说一说?
出示
师:这一个呢?
生:分数是4/100,小数是0.04
师:0.04里面有几个0.01?
生:有4个0.01
出示
师:这是多少?
生:分数是21/100,小数是0.21
师:0.21里面有几个0.01?
生:有21个0.01
4、认识两位小数的计数单位和数位
师:两位小数的计数单位是什么?(生:0.01)
也可以说是百分之一(补充数位顺序表)
百分之一所占的数位是?(生?百分位)(补充顺序表)
两位小数表示的是?(生:百分之几的数)
5、三位小数的意义
出示
师:再看这个图,涂色部分是多少?
生:分数是1/1000,小数是0.001
师:0.001表示什么?
生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001
师:谁再来说?
出示:0.125
师:再看这个数,是多少?(生:零点一二五)
没有图了,你还能说出他的意义吗?
生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125
师:0.125里面有几个0.001?
生:有125个
6、三位小数的计数单位和数位
师:三位小数的计数单位是什么?(生:0.001)
也可以读作千分之一
千分之一所占的数位是?(生:千分位)
(补充数位顺序表)
三位小数表示的是什么数?(生:千分之几的数)
【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】
7、延伸
师:那四位小数呢?(生:万分之几)
计数单位是?(生:万分之一)
往下说的完吗?(生:说不完)
我们可以用省略号表示(补充数位顺序表)
8、拓展
师:小数部分有没有最小的计数单位?
生:有
师:有不同意见吗?
生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小
师:你们听懂了吗?
想一想,0.1是怎么得到的?
生:平均分成10份,1份是0.1
师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?
生:没有最小的计数单位。
师:小数部分有没有最大的计数单位?
生:十分之一
9、修改数位顺序表
师:拿出你刚才写的数位顺序表,看一看你写的对吗?
有问题的修改一下
(三)计数单位间的进率
1、出示:
师:第一个图的涂色部分用小数表示是?(生:0.1)
第二个图的涂色部分用小数表示是?(生:0.10)
你发现了什么?
生:两个图的涂色部分一样大
师:也就是他们大小相同。(出示:0.1=0.10)
有什么不同吗?
生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份
师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份
第一个表示1个0.1,第二个表示10个0.01
你还有什么发现?
生:10个0.01是0.1(板书)
师:一起读一遍
2、出示(由1个0.1增加到10个0.1)
生一起数到1
师:你发现了什么?
生:10个0.1是1
师:(板书)再读一读
3、小结
师(指数位顺序表):你有什么发现?
生:进率是10
师:对,小数和整数一样,相邻两个计数单位间的进率是10
四年级数学《小数意义》教学设计7
一、教学目的:
1、在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
2、在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
3、在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点:
1、理解小数的意义,理解小数的计数单位及它们间的进率。
2、理解小数的计数单位及它们间的进率。
三、教学准备:
米尺、表格纸、多媒体课件等。
四、教学过程
(一)创设情境,直入新课
教师:1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度能有多少?
2.大家估计得对不对呢?让我们一起用直尺来验证一下。
学生:实际测量。
教师:谁愿意把你测量的结果告诉大家?
学生:汇报预设,学生1:我测量课桌面的长度是120厘米。学生2:我测量课桌面的长度是1米2分米。……
教师:课桌的长度如果以米为单位就是1.2米。(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。(2)认识小数吗?在哪儿见过小数?(3)出示课件超市的商品价格,书店的书本价格。今天我们一起学习小数的意义。
(设计意图:联系生活实际提出问题,让学生动手操作,在进行测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必然性。)
(二)实践入手,探究意义
1.认识一位小数。
教师:各小组观察米尺,把1米平均分成10份,每份是多长?
学生:1分米。
教师:把1分米改写成用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生:交流想法。十分之一米
教师引导学生回答:1分米,也就是十分之一米,用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。学生独立完成,教师巡视。交流分享学生的思考过程。
教师:出示课件:1、线段平均分成10份,取3份,用小数表示。2、正方形平均分成10份取8份,用小数表示。3、分母是10的分数对应的小数。仔细观察白板,你发现了什么?
学生:回答。
教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
2.认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生:先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生:分数的分母都是100。学生:小数点的右面都有2个数字。教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
教师:出示课件:1、把正方形平均分成100份取35份,用分数和小数表示。
设计意图:引导学生根据一位小数表示十分之几,推测出两位小数和什么样的小数有关,有意识地促进迁移,体验成功乐趣,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生:先独立研究,再汇报交流结果,教师根据学生回答适时板书。教师:通过你的研究,你发现了什么?
学生:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是千分之一米,写成小数就是0.001米。
学生:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?学生:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?学生:四位小数表示万分之几,五位小数表示十万分之几。结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
教师小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4.认识小数的计数单位。
教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?学生:交流。
教师:根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1,0.01,0.001……
5、小数相邻计数单位之间的进率
教师:引导学生1分米=0.1米。1厘米=0.01米。1分米=10厘米,那么0.1米=(10个)0.01米,0.1=(10个)0.01.……得出:每相邻的两个计数单位之间的进率是十。
(设计意图:引导学生从“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,按循序渐进的认知规律,先讲解,接着放手让学生独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,总结小数相邻计数单位之间的进率是十。锻炼了学生的能力,破解了重难点,。)
(三)巩固应用,强化认知
1.第33页做一做。
2.第36页练习九第1题。
3.课件:填空:0.7里面有7个();再增加()个0.1就等于1。0.23里面有()个0.01。34个0.001是();34个0.01是();34个0.1是()。
4.在括号里填上适当的小数。学生先独立完成,教师再让学生汇报答案,集体评议。
(设计意图:用不同层次的练习,让学生在对比练习的中加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用,帮助学生根据小数意义理解生活中常见的小数所表示的含义。)
(四)总结巩固,拓展延伸
教师:今天这节课我们学习了哪些知识?你有什么收获?
教师:出示课件,介绍对小数发展具有杰出贡献的两位数学家——刘徽,朱世杰。
(设计意图:通过问题帮助学生梳理本节所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。)
《小数的意义》教学设计9
(一)教学目标:
1、知识技能目标:
通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。
2、过程与方法:
培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。
3、情感态度价值观:
使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。
(二)教学重点、难点:
1、帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。
(三)教学时间:
1课时。
(四)教学准备:
1、多媒体。
2、课业本。
(五)教学过程:
一、创设情境,激发兴趣,揭示课题。
1、引入:
开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮元,新华字典48元,信封元,水彩笔32元,本子元,文具盒元)
2、走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?
学生介绍。
可能说出:元3角
元5分
元4角6分
元10元9角
3、你能把这些商品价格分分类吗?并说说你是怎样想的?
学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;元、元、元、元分为一类,这些都是小数。
4、生活中,你在哪里见到过小数?
学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:米,视力表,瓶子上升……,同时配合板书。
5、教师小结:
原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。
(板书课题:认识小数)
二、引导学生感知小数的含义。
1、小数的读法。
(1)(cai只剩下小数的价格)请生读一读这些小数。
(2)师:这些小数你们都会读了,我写一个你们会读吗?
师写:请生读。师:
这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?
(3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。
(4)读一读:。
2、认识两位小数表示百分之几。
(1)一位小数与十分之几。
①师:1角是1元的几分之一?是几分之一元?你是怎么想的?
生:1元=10角,元是1角,元=元。
师配合板书:1元=10角元(1角)=元
②师:那么元是几分之几元呢?
生可能回答:元是元,元是元。
师配合板书:元(3角)=元
③师:你说一个一位小数的价格,并请同学说说它是几分之几元?
汇报:男女生对出题,互相做答。
(2)两位小数与百分之几。
①师:元是几分之几元?
生独立思考后汇报,老师配合完成板书:
1元=100分元(1分)=元
元(5分)=元
②师:元是几分之几元?
同桌互说后请一生汇报。
③师:(将改为)元是几分之几元?你会说吗?
师配合回答完成板书:46分=元=元
④师:你出一个两位小数的价格,请同桌说出它是几分之几?
同桌互说后,请一组汇报,并板书记录。
(3)练一练第1题的第(1)小题。
①出题后生独立思考。
②请生汇报。
3、试一试。
(1)(cai出示尺子,并指着1厘米处)
①这是多长?
学生可能回答:1厘米。
②师:如果用“米”作单位,你能说出它的长度吗?
学生汇报,师配合板书:
1米=100厘米1厘米=米=米
(2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?
(3)在书上完成试一试的题目。生汇报,进行核对。
(4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?
4、读一读黑板上的分数与小数。
三、帮助学生抽象出小数的意义。
1、例2。
(1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。
(cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(2)写成小数是(),写成小数是()。
(3)能分别说出空白部分用分数和小数怎样表示吗?
学生汇报。
2、试一试。
(1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”
(2)比较上面每组的分数和小数,你能发现什么?
学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。
(3)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。
再请学生说说改写的方法。
(4)出示:写成小数是多少?呢?你能写一写,读一读吗?
为什么在小数点后添“0”?
(5)请学生汇报改写的方法。
(6)板书:分数小数
十分之几一位
百分之几两位
千分之几三位
四、巩固练习。
1、p32练习五1
2、p32练习五2
(1)出示后请生读一读这些小数,后独立完成是课业本上。
(2)说一说,分母各是多少?
3、p32练习五3
(1)完成在课业本上。
(2)说出各是几位小数。
4、p32练习五4
(1)想一想,用几位小数表示。
(2)口答第2行的结果,第1行写在课业本上。
为什么在小数点与“2”点添“0”?
5、p32练习五5
(1)一生读题。
(2)同桌互相说一说。
(3)请一生汇报。
五、总结。
1、今天的课上你学会了什么?
2、在学习中得到哪些经验?
小数的意义教学设计2
教学要求:
1、使学生结合具体情境初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。
2、使学生进一步体会数学与生活的密切联系。
教学重、难点:能认、读、写小数部分是一位的小数,知道小数各部分的`名称。
教具学具准备:课件。
教学过程:
一、复习
7分米=()米3角=()元
9厘米=()分米1分=()角
二、新授
1、认识整数部分是0的小数
出示情境图:芳芳和明明在量桌面的长和宽,看看他们量的结果是多少?
(长5分米,宽4分米)
这是用分米做单位的,如果用米做单位,5分米是几分之几米?4分米呢?(板书)
师:十分之五米还可以写成0、5米,0、5读作零点五。
十分之四米还可以写成0、4米,0、4读作零点四。
(板书补充)
完整的板书:
5分米米0、5米读作:零点五米
4分米米0、4米读作:零点四米
书空:0、5 0、4
齐读:零点五、零点四
2、认识整数部分不是0的小数
出示情境图:
能不能像刚才那样,把几元几角写成以元做单位的数?
1元2角,想一想,2角是多少元?那么1元2角是多少元?(板书)
3元5角呢?(板书)
完整的板书:
1元2角1、2元读作:一点二元
3元5角3、5元读作:三点五元
书空,齐读。
3、认识整数、自然数、小数及小数各部分名称
师:我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,他们都是整数。像0、5、0、4、1、2、3、5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。
板书:
0、1、2、3自然数整数
05、 04、12、 35小数
整小小
数数数
部点部
分分
分别说一说0、4、1、2、3、5的整数部分和小数部分各是多少。
三、想想做做
1:仔细观察图意,说说题目的意思。
照样子填写。
说一说每组3个名数之间的联系和区别
2、3:独立练习。
4:先同桌互说,再全班交流。
5:为什么0右面第一个点上填0、1?1右面第二个点上1、2?
独立填写其他的小数。
教学后记:
学生说很简单,我可不敢掉以轻心,在小数这一块出问题的可多着呢。要不要说意义?
小数的意义教学设计3
教学目标:
1.进一步理解小数的含义。
2.学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。
3.通过收集生活中的小数,体验生活中处处有数学。
教学重点:
使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。
教学难点:
熟练的进行时间单位单名数与复名数的改写。
教学过程:
一、引入新课
复习引入:
1千米=()米
1千克=()克
1米=()厘米
1吨=()千克
1时=()分
1分=()秒
1平方米=()平方分米
1平方分米=()平方厘米
在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。
找一组同学汇报他们收集的数据。
二、新课学习
1、名数
老师也收集了一些生活中的小数,我们一起来看一看:课件出示。
糖果的质量是0、5千克,小明的身高是1、35米,小红体操得分是9、25分,小丽的体温是38、5度。
这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?
在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30、4千克……等.通常把量得的数和单位名称合起来叫做名数。
观察同学们说出的这些名数,有什么相同点和不同点?
相同点:都是测量的结果,有数有单位;
不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。
带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。
大家能举出一些单名数和复名数的例子吗?
3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。
2、例1
(1)80厘米=()米
引导学生观察:从这道算式中你发现了什么?
低级单位的名数能否转化为高级单位的名数呢?
应该怎样改写?学生汇报:说一说是怎样想的?
教师说明:因为100厘米=1米,80厘米=()米=0、80米,还可以这么算,80厘米=80÷100米=0、80米,其中的80÷100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80÷100=0、80。
说一说你更喜欢哪种方法?
讨论:比较转化前后,什么变了,什么没变?
单位名称变了,数的大小变了,实际的多少没变。
让学生举出几个由低级单位转化为高级单位的例子。
归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。
练一练
(2)教师出示1米45厘米=()米
这道题与上面的题相比有什么不同?(是复名数改写成单名数)
引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?
首先把1米45厘米写成1、
米,因为1米等于1米,所以1米再加45厘米就等于1、45米。还可以这么想,1米45厘米是145厘米,145÷100=1、45米。
练一练:
4千米180米=()千米
7米6厘米=()米
3、例2
0、95米=()厘米
可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数.
想一想:1、32米=()厘米
可以这么想:1、32米=1米+0、32米=100厘米+32厘米=132厘米,还可以这么算:1、32米=1、32×100厘米=132厘米。
三、巩固练习
1.直接写出得数。
0、45×10=
1、6×100=
0、056×1000=
40、5÷100=
7、8÷1000=
0、7÷10=
3、06÷10=
3、06÷10=
2.小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?
张佳佳:
体重3、85千克
身高14、3米
早晨喝0、005千克牛奶。
四、课堂总结
1.这节课的学习内容是什么?
2.通过这节课的学习你有什么收获和体会?
3.还有什么疑问?
《小数的意义》教学设计10
教学目标:
1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。
2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。
3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。
学情分析:
小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的'意义,体会小数与生活的密切联系,从而实现认识的提升。
教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。
教学难点:理解小数的意义。
教学过程:
一、创设情境,了解小数的产生。
1、回忆一下:我们学过什么长度单位?
2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?
3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。
4、揭题。(板书:小数的意义)
二、自主探讨,理解小数的意义。
(一)研究一位小数
1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?
这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?
2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。
3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。
4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)
(二)研究两位小数(自助探究)
1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?
2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。
3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。
4、说发现。
(三)研究三位小数。(自主探究)
1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。
2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。
3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。
4、说发现。
(四)推导
1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。
1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。
刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。
三、合作交流,探讨小数的计数单位。
1、填一填。
(1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。
填一填,说说你是怎么想的。
像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)
同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)
请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)
2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。
0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?
四、巩固练习。
课件出示练习。
五、总结。
这节课你有什么收获?
《小数的意义》教学设计11
教学目标:
1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。
2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
教学过程:
一、回顾导入:
1、师:在三年级时我们一起认识了小数,你还记得吗?
(稍作停顿,学生回忆小数知识)
你对小数有了哪些了解?(生独立发言)
(可以是读写方法、意义、一位小数、组成部分、使用情况等)
2、师(板书:0.3):会读吗?(生齐读)
你是怎样理解0.3的?
3、揭题:今天起我们将继续学习小数的相关知识。
(出示课题:小数的意义和读写方法)
二、展开新授:
1、教学例1:
(1) 课件播放例1:
师:你能读出这三种物品的价格吗?
(个别读,师板书价格及读法)
0.05:请两生个别读再齐读,这个读法与以前学过的数的读法有什么不同?
小数部分依次直接读出数字就可以了。
(2) 用角或分做单位,说出这些物品的`价钱。
生答师追问:
3角为什么可以写成0.3元?
5分为什么写成0.05元呢?
(1元=?分,1分是一元的几分之几?可以写成多少元?
5分是一元的几分之几,可以写成多少元?)
4角8分是一元的几分之几,可以写成多少元?
书p25/1(1)课件出示,直接口答。
(2) 齐读0.05、0.48:
0.05、0.48分别是一元的几分之几?
与以前认识的小数有什么不同?
揭示两位小数、一位小数的概念。
2、教学例2:
(1) 师:用分作单位的数是一元的百分之几,可以写成两位小数。生活中还有很多用到两位小数的情景。
(出示一把米尺):把一米平均分成100份,每份长多少?
1厘米是1米的几分之几?
可以写成小数是?
(2) 播放例2的课件,师稍作讲解。生独立完成书上的尺子图。
全班交流书写情况。
29厘米呢?
你想到了多少厘米,写成小数是多少米?
(3) 师:把一米平均分成1000份,每份长多少呢?
1毫米是1米的几分之几?可以写成小数是?
播放课件,稍作讲解。生独立完成书上的尺子图。
全班交流书写情况,并齐读这些小数,(指导:小数部分的零不能省略读)
(4) 师:他们是几位小数?
分别表示千分之几?
有没有四位小数呢?你能举个例子吗?
他表示多少分之多少?
按照这样的方法还有五位小数、六位小数位数更多的小数。我们以后将学到的圆周率还是个无限小数呢。
3、小结、揭示小数的意义:
师:齐读黑板上小数和对应的分数。
黑板上的这些小数是由怎样的分数改写成的?
你还发现了什么?
课件出示:分母是10、100、1000的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几
学生默读理解。
师:两个省略号分别省略的什么?你能补充吗?
三、巩固练习:
1、试一试:(课件播放题目)
师指导:第一幅图把正方形平均分成了几份?每一份是什么形状的?
第二幅图能?
第三幅图把什么看作整数1了?
平均分成了几份?你是怎样看出来的?
每一份是什么形状的?
独立填书。
全班交流,并结合图说说0.7、0.43、0.009分别表示什么?
2、练一练第二题,独立完成在书上。
全班交流。
3、练习五第二题、第三题。
独立练习,口头汇报。
0.300表示什么?
4、练习五第四、五题。
独立练习,全班交流。
四、总结:
师:谁能来归纳一下今天我们的学习内容? 你有哪些收获?
《小数的意义》教学设计12
一、教学目标
1、理解小数的意义,能够说出小数各部分的名称。
2、正确掌握小数的读、写方法。
3、通过观察、测量体验小数与生活的关系。
4、在合作与交流中的过程中,感受数学学习的乐趣。
5、体验数学在身边,感受数学学习的价值和乐趣。
二、教学重点和难点
1、认识小数学概念。
2、小数表示形式。
3、理解小数的含义是本课的重点、也是难点。
三、教学过程
一)创设情景,导入新课
创设情景,引导学生交流搜集到的生活中的小数。
教师根据学生回答随机板书:
1、一张桌子的高度是0.7米;
2、教室窗户的宽是0.85米;
3、一份汴梁晚报价格是0.50元
4、每度电的价格是0.52元。
5、一棵包菜的重量是0.625千克。
6、奥运冠军刘翔的身高是1.89米,体重是74.11千克。
问题思考:为什么在这些地方需要用小数来表示?
引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。
问题:1、这些都是小数,你知道关于小数的哪些知识呢?
2、关于小数你还想知道些什么?
3、今天我们就进一步研究小数的意义。(揭示课题)
这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的'火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
二)新授部分
1、0.7米表示什么意义?谁来说说(借助课件,帮助学生理解)
引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成0.1米。谁也来就像这样完整说一说。
师:这就是0.7米的意义。对照板书中的分数和小数,你能发现什么?
学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。
问题:十分之五等于多少?0.8等于多少?
我们过去三年级所认识的0.1米、0.2米以及0.7米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?
每份长1厘米,就是1/100米,还可以写成0.01米.
问:谁愿意再来说说0.01米的意义。学生完整地说出:
1米平均分成100份,每份长1厘米,就是1/100米,还可以写成0.01米。
想一想0.85米表示什么?
重点让学生自己来说一说。
观察:对照板书,那么你们又有什么新的发现?
得到:百分之几可以写成两位小数,两位小数表示百分之几。
师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?
你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。
师:如果将1米平均分成10000份呢?能再举例吗?
接着学习下面的几个小数:0.50元、0.52元、0.625千克
把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。
归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。
三)练习加强理解
1、读小数:1.35元0.49米0.98千米0.87千克
2、1厘米=()/()分米5角=()元
3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示
四)教学反思
1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。
2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。
3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。
4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。
5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。
《小数的意义》教学设计13
教学目标:
知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。
能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。
情感目标:在生活情境中了解小数的产生;体会数学与自然及人类社会的密切联系,了解数学的价值,增加对数学的理解和应用数学的信心
教学重点:
小数的意义,计数单位及进率。
教学难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率
学情分析:
三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。
教学方法:
操作法,观察法,讨论法,引导尝试法。
教学课时:1课时
教学过程:
一、情景导入
1.同学们,华东超市大家熟悉不熟悉啊?去过吗?今天,老师带大家再去哪儿逛逛,好不好?(课件出示)请大家在逛超市的同时,找找看,你在哪儿发现了数?是哪些数?
2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?
3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。
二、新课教学
(一)认识一位小数
出示一米长的纸条
1.估一下,大概有多长?
2.确定是一米长的纸条。
出示长方形的纸片,老师想知道这个表的长和宽,怎么办?(量)
3.用一米的纸条做尺子,来量数位表的长。
4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)
(板书)1分米
1/10米
0.1米
把1米平均分成10份,每一份是1分米。
也就是说1分米是把1米平均分10份里面的1份,也就是1/10米
也可以用小数表示为0.1米
【设计意图】
用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。
5.通过测量,得到:长是3分米。
3分米
3/10米
0.3米
6.学生活动
(1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。
(2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?
涂其中的几份?
【设计意图】
即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。
(二)认识两位小数
1.量出长方形的宽
比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)
(板书)
1厘米
1/100米
0.01米
2.得到21厘米,用米作单位怎么表示?
21厘米
21/100米
0.21米
3.学生活动
(1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?
(2)如果要在方格纸上涂出0.65呢?
(三)认识三位小数
如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)
1毫米
1/1000米
0.001米
(四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?
【设计意图】
在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。
(五)小数的计数单位
课件演示:用一个正方体的分解来演示
小数的计数单位分别是:十分之一,百分之一,千分之一……
分别写作:
0.1、
0.01、
0.001……
(六)教学小数计数单位之间的进率
10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。
师:同整数一样,小数里面每相邻的两个计数单位进率都是10。
【设计意图】
直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。
三、巩固练习
“勇闯智慧岛”
1.看图写出分数和小数。
2.我是小法官
四、课堂总结
1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)
2.评价学生活动,下课。
四年级数学《小数意义》教学设计4
教材来源:义务教育教科书,人民教育出版社xxxx年版
教学内容来源:小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:《小数的意义》
课时:第一课时
授课对象:四年级学生
目标确定的依据:
1.课程标准相关要求
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的`教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
评价设计:
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
《小数的意义》教学设计14
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。
教学目标:
1进一步掌握小数点位置的移动引起小数大小的变化。
2能根据要求正确移动小数点的位置。
3感受数学知识的严谨,养成认真、仔细的习惯。
教学重点:
进一步掌握小数点位置的'移动引起小数大小的变化。
教学难点:
根据要求正确移动小数点的位置。
教学过程:
一、基本练习
1小数点位置移动引起小数大小变化的规律是什么?
2练习十六第3题。
学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。
二、指导练习
1第8题
老师针对不同的学生进行指导。
第9题请同学们先汇报收集的资料,再算一算。
3第10题
注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。
三、独立练习
1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。
2学生独立完成第6,7题
四、拓展练习
练习第11题。
引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。
五、小结
哪些同学愿意谈谈今天的收获?
《小数的意义》教学设计15
小数的意义
第一课时
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。
教学目标:
1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。
2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。
4感受数学与生活的紧密联系,体会小数在日常生活中的作用。
教学重点:
结合现实情境,认识小数及小数的计数单位。
教学难点:
理解小数的意义及十进关系。
教学准备:
米尺、直尺等。
教学过程:
一、引入新知
1量一量黑板的长,课桌长、高
这些数是不是都是整米数?
教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。
2回忆、练习
1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m
教师:关于小数,同学们还想知道什么?
板书课题:小数的意义
二、探索新知
1教学例1
(1)填一填,说一说。
(出示例1第1个图)
①此图用分数、小数该怎样表示?你是怎样想的?
说一说:07表示把一个正方形平均分成()份,取其中()份。
07里面有()个0.1。
②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。
(2)同理说一说。(后面两幅图)
①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的.?
②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?
2教学例2
(认识三位小数)
(1)看一看,填一填。
①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。
(出示图)学生填分数和用小数表示。
1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。
(第70页例2图)其中1份、25份,107份用分数和小数怎样表示?
(2)说一说0.025,0.107分别表示什么以及它们的组成。
(3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?
3讨论、归纳小数的意义
学生讨论:什么是小数?小数的计数单位有哪些?
归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。
学生自学数位顺序表。
三、课堂活动
完成课堂活动第1,3,4题。
先学生独立完成,集体评议,让学生说说是怎样想的?
四、课堂小结
本节课学会了什么?还有什么困难?
板书设计:
小数的意义
一位小数表示十分之几。
两位小数表示百分之几。
三位小数表示千分之几。
每相邻两个计数单位间的进率是“10”。
0.1,0.01,0.001……就是小数的计数单位。
【《小数的意义》教学设计】相关文章:
小数的意义教学设计12-31
小数的意义教学设计(精选20篇)04-12
小数的意义教学设计(15篇)01-16
小数的意义教学设计范文(精选6篇)04-01
《小数的意义和读写方法》优秀教学设计04-08
小数的意义教学反思01-17
《小数的意义》教学反思09-24
小数乘小数教学设计01-10
《小数乘小数》教学设计03-04
《小数乘小数》的教学设计03-15