公因数教学设计

时间:2023-05-14 11:19:17 教学资源 投诉 投稿

公因数教学设计15篇

  作为一名老师,时常需要准备好教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们应该怎么写教学设计呢?以下是小编帮大家整理的公因数教学设计,仅供参考,希望能够帮助到大家。

公因数教学设计15篇

公因数教学设计1

  教学内容:

  第45—46页。

  教学目标:

  1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。

  3、使学生能探索出解决问题的有效方法。

  教学重、难点:

  探索找两个数的公因数的方法。

  教具准备:

  实物投影仪等。

  教学过程:

  一、填一填。

  1、呈现找公因数的一般方法:

  (1)让学生分别找出12和18的因数,并交流找因数的方法。

  (2)将这些因数填入两个相交的集合。引导学生重点思考:两个集合相交的部分填哪些因数?

  引出公因数和最大公因数的概念。

  (3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的.公因数,其中最大的一个是它们的最大公因数”。

  (4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。

  2、引导学生讨论其它的方法。

  二、练一练。

  1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。

  2、第3题,学生独立完成。

  3、第4题,让学生找出这几组数的公因数后,说一说有什么发现。这里第一行的两个数的公因数只有1,第二行的两个数具有倍数关系,对于这样有特征的数字,

  4、让学生用自己的语言来表述自己的发现。

  5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。

  三、数学探索。

  1、写出1、2、3、4、5、……、20等各数和4的最大公因数。

  (1)先让学生填表,找出这些数与4的最大公因数。

  (2)再根据表格完成折线统计图。

  (3)组织学生观察表格,讨论“你发现了什么规律?”

  2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。

  四、总结:

  谁能说一说找公因数的一般方法是什么?

  板书设计:

  找最大公因数

  12=()×()=()×()=()×()

  18=()×()=()×()=()×()

  12的因数:18的因数:

公因数教学设计2

  教学目标:

  1、让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

  2、渗透集合思想,体验解决问题策略的多样化。

  3、培养学生的抽象能力和解决问题能力。

  教学重点、难点:

  公因数与最大公因数的定义,探索找两个数的最大公因数

  教学准备:

  多媒体课件。

  教学过程:

  一、预设情境,感受新知

  1、情境引入

  情境图→文字→表格

  最近杨老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。

  你知道凌老师对铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)

  2、合作探究

  (1)讨论

  用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)

  (2)交流

  A、交流边长是“4” 为什么?→你们觉得行吗?→铺满

  B、交流边长是“2” 出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满

  C、交流边长是“1” 铺一个角→你觉得长边、短边可以分别铺几块?→铺满

  二、探究新知

  1、认识公因数和最大公因数

  (1)讨论交流

  还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?

  (宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)

  (2)抽象公因数概念

  我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?

  (1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)

  同意吗?(能听懂他的意思吗?说的是什么?)

  那我们就用以前的方法找找16、12的因数。

  16的因数有:1、2、4、8、16

  12的因数有:1、2、3、4、6、12

  你发现什么?

  (我发现1、2、4既是12的因数又是16的因数。)能不能简单的说说,它们是12和6的什么数吗?

  (1、2、4是12和16公有的因数,1、2、4是12和16的公因数) 板书“公因数”

  说能说一说什么是公因数

  几个数共有的因数,就是这几个数的公因数。

  那16和12的公因数有:1、2、4。

  (3)用集合圈表示

  我们可以用集合圈来表示两个数的公因数

  (点击课件出示两独立集合圈)

  这集合圈我们可以看成是16的因数,这一个集合圈我们可以看成是12的因数(课件动态显示两集合圈移动形成交集)

  现在中间的表示什么呢?应该填?(生说师点击课件)

  那这圈里的(指左边、右边)填?表示?

  (4)认识最大公因数

  如果凌老师想用最少的块数铺好地面,可以选择边长是几分米的地砖?

  你是怎么想的?

  (从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)

  实际上这4就是16和12的最大公因数,板书“最大公因数”

  16和12的最大公因数是4

  2、运用新知识,解决“老”问题

  如果现在让我们考虑“可以选择边长是几分米的地砖”,我们可以直接?(写因数,找公因数)

  那如果解决“边长最大是几分米”呢?(最大公因数)

  三、合作交流、探索方法

  大家刚才帮助凌老师解决边长可以几分米时,先找两个数的因数、然后圈出两个数的公因数,再找最大的公因数,就是我们求最大公因数的一般方法。会求两个数的最大公因数吗?

  求最大公因数:18和27 15和10 两生板书

  交流反馈。

  想想看,还有没有更简单的`方法呢?

  如果我指找出一个数的因数,你能找出两个数的最大公因数吗?现在只找出18的因数,你能找到18和27的最大公因数吗?

  “先找小的数18的因数,再看哪些是27的因数”

  那如果只找了27的因数呢?

  “先找27的因数,再看哪些是18的因数”

  你能找出10和15的最大公因数吗?

  这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。

  四、巩固练习、总结提升

  1、找出下列每组数的最大公因数

  4和8 6和18 1和7 8和9

  2、小游戏

  (1)找同桌学号的最大公因数

  你们是怎么找的?

  (2)凌老师上学的时候学号是36号,与我的同桌学号最大公因数是12。你知道我的同桌是几号吗?

  你是怎么想的?

  当时我们班级人数不到60人,我同桌的学号有6个因数。现在你知道他到底是几号吗?

公因数教学设计3

  教学内容:

  完成练习五的第12~14题。

  教学要求:

  1、通过练习,使学生能进一步明确求两个数的最小公倍数和最大公因数的方法。

  2、使学生能对所学的知识进行整理,并建立合理的认知结构。

  教学重点:

  巩固求两个数的最小公倍数和最大公因数的方法。

  教学难点:

  完善学生的'认知结构。

  教学过程:

  一、完成第30页的12~14题。教学过程:

  1、第12题

  先让学生连一连,交流使说说公因数和公倍数的含义。

  2、第13题

  先由学生独立完成。

  然后说说分别是什么方法求出每组数的最大公因数的。

  什么情况下可以根据两个数的特征直接写出它们的最大公因数?

  3、第14题

  先由学生独立完成。

  然后说说分别是什么方法求出每组数的最小公倍数的。

  什么情况下可以根据两个数的特征直接写出它们的最小公倍数?

  4、联系第13题和第14题比较求两个数的最小公倍数和最大公因数的方法有什么相同与不同?

  二、思考题

  帮助学生弄清两点:

  ⑴水果实际上分掉45块,巧克力实际分掉35块。

  ⑵由于每种糖果都是平均分给这个小组的同学,因此小组的人数既是45的因数,又是35的因数。

  然后让学生解答。

  三、“你知道吗”

  让学生读一读,并说一说从中了解到了哪些知识,自己对哪部分比较有兴趣,还想进一步了解哪些知识?鼓励学生用上述方法试着找两个数的最小公倍数和最大公因数。

公因数教学设计4

  教学目标:

  1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。

  2、培养学生分析、归纳等思维能力。

  3、激发学生自主学习、积极探索和合作交流的良好习惯。

  教学重点:

  理解公因数和最大公因数的概念。

  教学难点:

  理解并掌握求两个数的最大公因数的方法。

  教具准备:

  课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。

  教学过程:

  一、创设情境,引导动手操作

  1.情境导入

  2.出示问题,明确要求。(理解重点要求,如整分米数,整块)

  3. 学生猜测可选用几分米的地砖。

  4.介绍教具,明确活动要求.

  5.小组活动。

  二、自主探索,形成概念

  1.展示学生作品,得出结果。

  2.教师将不同铺法展示到课件上。

  3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)

  4.引出公因数和最大公因数的'概念,揭示课题。

  5.巩固练习课本80页做一做。

  三、自主探究,掌握方法

  1.怎样求两个数的最大公因数。

  2.出示例2,独立思考,做在练习本上,指名板演,集体订正。

  3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)

  四、巩固练习,总结提升

  1.81页做一做,独立思考,指名回答,集体订正。

  2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)

  五、小结

  谈谈本节课有什么收获。

公因数教学设计5

  教学内容:现代小学数学第九册第54~55页。

  教学目标:

  知识目标:理解公因数、互素数的概念,会判断两个数是否互素。

  能力目标:教学中渗透集合思想,培养学生自主参与能力。

  教学准备:集合圈两个,教学用题。

  教学过程:

  学习活动目标

  学习活动

  教师提供的帮助与指导

  活动设计意图

  预案调整

  猜老师的小灵通号码是:6的最大因数;最小素数的4倍;最小的素数;比10小的最大偶数;8的最大因数;最小的自然数;表示没有的数;()

  一、组织教学:

  看谁猜得又对又快

  复习原来的知识,激发学习兴趣。

  明确公因数的概念。

  1、口答:8的因数,12的因数。

  2、“抢因数”游戏。

  3、交流比赛心得。

  讨论如何两个人共赢。

  移动集合圈,把公有的因数填入重叠部分。

  6、学生练习。

  ①讨论:求6和9的公因数有哪些方法?

  ②完成书上第55页:写出9和15的因数,再写出公因数,并完成集合圈。

  ③填空:

  6的因数:

  18的因数:

  6和18的公因数:

  我的发现:

  完成第54页集合圈。

  二、教学“公因数”的概念。

  板书8和12的所有因数:1,2,3,4,6,8,12。

  宣布游戏规则:把属于你这个数的因数填入集合圈内,谁多为赢。

  小结:要想自己不输,要先拿自己和对手都需要的卡片,像1,2,4,既是8的因数,又是12的因数,我们就说1,2,4是12的公因数。(板书:公因数)

  4、在激烈的竞争中,要想自己百战百胜,就的知己知彼,战胜对手并不是竞争中的最高境界,如果能两个都赢,不是更好吗?

  5、指导看集合圈,得出概念。

  板书:几个数公有的因数叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

  渗透集合的思想,进行思想教育。

  明确两个数是倍数关系时的公因数就是较小数的因数。

  明确互质数的概念。

  1、完成书上第55页表格,填完后说一说,这几组数的公因数有什么特点?

  3、你觉得应该怎样判断两个数是不是互素数?

  4、练习:第55页练一练。

  5、游戏互动。

  找出与自己学号互质的数,组成互质数。看谁找得最多。

  三、教学“互质数”

  2、板书:公因数只有1的两个数叫做互素数。

  6、随机板书几种一定互质的情况和可能互质的情况。

  找出一定能组成互质数的几种情况。

  四、课堂小结

  今天这节课你有什么收获?

  五、巩固练习。

  1、按要求写出互素数。

  ①两个合数互素;

  ②一个素数和一个合数互素;

  ③两个都是素数互素;

  2、明辨是非。

  ①2是互素数。

  ②互素数是没有公因数的两个数。

  ③有公因数1的两个数一定是互素数。

  ④只要两个数是偶数,那么这两个数就不能成为互素数。

  ⑤成为互素数的两个数,一定是素数。

  3、请你当参谋。

  老师有一间厨房要铺地砖,长30分米,宽24分米,请同学们帮老师选一选,用多大的正方形地砖才能铺得既整齐又节约呢?(地砖的边长为整分米数)如果老师想铺得快点,你认为哪种砖最合适?

  4、考考你:

  东方小学五(1)班有男同学27人,女同学18人,一起去划船(每船不超过6人),要保证每条船上的男女同学都分别相等,请你算算应该租几条船?每条船上最多坐几人?

  巩固本课所学内容,进一步明确概念。

  应用所学知识解决实际问题。

  板书设计:

  公因数互素数

  几个数公有的因数叫做这几个数的公因数。公因数只有1的两个数叫做互素数。

  8和12的公因数一定能组成互素数:

  ①1和任何自然数

  ②两个不同的素数

  ③相邻的自然数

  ④相邻的奇数

  ⑤素数和合数,但无倍数关系。

  8的因数12的因数

  教学反思:

  新课程标准明确提出:数学教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上。本节课强调从学生已有的知识经验出发,由老师的小灵通号码为导入,使学生找到了新旧知识的联系点,同时也激发了学生的学习兴趣。

  学生学习数学既是一个生动活泼的、主动的和富有个性的过程,也是一个经验共享、相互启智的过程。本节课教师放手让学生在自主探究的同时,为学生创设了多次合作、讨论和交流的机会。在新授部分,我设计了一个“抢因数”的游戏,在游戏的.过程中,让学生反思:怎样才能共赢?从而让学生自己找到了“公因数”的概念。同时在这一过程中,渗透了集合圈的思想,使学生自己想到如何用集合圈的形式来表示两个数的因数以及公因数。在整个这一环节的教学中,我并不是发号施令者,而是学生主动学习的引导者,组织者。当学生发现问题时,产生了探索的欲望时,我鼓励他们积极地探索,这样就充分地体现了学生探索的主动性,等到解决了问题,学生的成功感也会特别大,这对于学生树立信心,提高学习内驱力,很有必要。在学习互素数这一概念时,我是通过让学生先填书上第55页的表格,进而让学生发现这几组公因数的特点,从而自己得出了互素数的概念。接着让学生利用自己的学号,在班内找出与自己学号可以组成互素数的学号,组成一组互素数。在交流的过程中,充分利用了学生所提供的课堂资源,让学生自己找出了一定组成互素数的几种情况及可能组成互素数的情况。在这一环节中,我始终尊重学生,引导学生大胆探索,学生的学习积极性不断地提高,学生学得主动,生动,轻松。在巩固练习阶段,我设计了一组判断题,让学生在判断反思的过程中,纠正了自己原有的错误认识,更加明确了概念。新授后,我设计了一道“请你当参谋”的应用题。老师有一间厨房要铺地砖,长30分米,宽24分米,请同学们帮老师选一选,用多大的正方形地砖才能铺得既整齐又节约呢?(地砖的边长为整分米数)如果老师想铺得快点,你认为哪种砖最合适?通过这一生活中现实场景的创设,营造出了学生争先恐后,急需一吐为快的生动活泼的课堂气氛。真正体现了数学来源于生活,又服务于生活这一理念。

  教后重建:

  用集合圈表示倍数关系的公因数和一般关系的公因数时,最好还可以把两种集合圈对比一下,学生的概念还会更加清晰化。另外,在引入互素数这一概念时,可以设计若干组如互素关系、倍数关系、一般关系的数,让学生自己去找一找各组数的公因数,再说说有什么发现。这样既巩固了公因数的概念,又可以充分利用课堂生成性资源,引出互素数概念,发现组成互素数的部分规律。这样在巩固练习中又引出了新内容,使整个环节比较紧凑,也比较自然。同时能充分发挥学生学习的积极主动性。

公因数教学设计6

  教学目标

  1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。

  2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  教学重点

  教学难点理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。

  教学方法小组合作探究 练习法

  教学准备小黑板出示复习题

  教学过程:

  一、温故而知新

  1、温故——例1填一填、想一想。(让学生独立填写再反馈)

  12的因数:1、2、3、4、6、12。

  30的因数:1、2、3、5、6、10、15、30

  2、引导学生思考:发现了什么?

  让学生说出自己的感知,把话题集中到两个数的相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。

  重点思考:两个集合圈相交的部分应该填哪些因数?

  组织学生展开讨论交流反馈,同时引出本节课的`课题前言:两个数的公因数

  二、新知探究

  1、两个数的公因数和最大公因数

  (1)讨论反馈自己的发现

  (2)公因数和最大公因数的概念。

  2、怎样找两个数的最大公因数

  (1)由学生根据前面的探究过程,很自然地提出列举法

  (2)介绍短除法求最大公因数的方法

  板书介绍,并试求12和30的最大公因数

  学生试一试求下列各组的最大公因数

  16和24 6和12 7和9

  独立完成后指名板演,再进行集体讲评

  议一议:用短除法求最大公因数要注意些什么?

  让学生在思考后明确:必须除到两商除了1再没有别的公因数为止

  思考:还发现了什么?

  引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?

  3、介绍互质数

  (1)互质数的意义

  (2)对互质数的探讨

  质疑:互质数都是质数吗?互质数可以是怎样的两个数?1既不是质数也不是合数,它能与别的非零自然数组成互质数吗?

  分析:2和3 4和15 8和9 12和6 1和18 4和25

  在学生议后,得出公因数只有1的两个数有哪些。

  并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)

  三、练习深化

  求下列各组数中的最大公因数。

  24和30 7和9 18和6 31和3 38和57

  可以让学生独立思才,哪几组数可以直接得出?

  四、全课总结

  1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。

  2、正确判断两个数的互质关系。

  五、布置作业

公因数教学设计7

  教学内容:教材第12页

  教学目标:

  知识与技能:理解两个数的公因数和最大公因数的意义。

  过程与方法:通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  教学重难点:理解公因数和最大公因数的意义。

  教学过程:

  一、预习砺能

  1、提问:什么是因数?怎样找一个数的所有因素?

  2、写出16和12的所有因数。

  提问:从16和12的所有因素中你发现了什么?

  二、导学砺能

  1.出示例1 。

  ( 1)引导学生审题,理解题意,一张长30cm、宽12cm的长方形纸,剪成大小相等的正方形且没有剩余,这个正方形的边长最大是多少厘米?

  ( 2)、以小组为单位,探究如何拼剪正方形。

  ( 3)、多媒体演示剪小正方形的过程,进一步验证学生动手操作的'情况。

  ( 4)、通过交流,得出结论:要使所剪成大小相等的正方形且没有剩余,正方形的边长必须既是30的因数,又是12的因数。

  2、教学公因数和最大公因数。老师用多媒体课件演示集合图。

  1,2,3,6是12和30公有的因数,叫做它们的公因数。其中,6是最大的一个公因数,叫做它们的最大公因数。

  3、引导学生用短除法找两个数的最大公因数。

  三、巩固砺能

  1、达标练习

  完成教材第12页“试一试”。学生完成后归纳出规律。

  2、总结评价

  通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

公因数教学设计8

  教学内容:

  教科书第26-27页的例3、例4和“练一练”,练习五的第1-5题。

  教学目标:

  1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

  2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:认识公因数和最大公因数。

  教学难点:掌握在100以内找出两个数的公因数和最大公因数的方法。

  教学准备:

  长18厘米、宽12厘米的长方形纸片,边长6厘米、4厘米的正方形纸片。

  教学过程:

  一、经历操作活动,认识公因数

  1、操作活动。

  ⑴先让学生用边长6厘米、4厘米的正方形纸片分别铺长18厘米、宽12厘米的长方形。

  再提问:哪种纸片能将长方形正好铺满?

  ⑵交流:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?

  ⑶1、2、3、6有什么共同的特征?

  ⑷4为什么不是12和18的公因数?

  揭示:1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数。

  二、自主探索,用列举的方法求公因数和最大公因数

  1、自主探索。

  提问:8和12的公因数有哪些?最大的公因数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①先找出8的因数,再从8的因数中找出12的因数。

  ②先找出12的因数,再从12的因数中找出8的因数。

  2、明确8和12的公因数中最大的一个是4,指出:就是8和12的最大公因数。

  3、用集合图表示。

  出示相交的集合圈,让学生把8和12的`因数分别填在集合图中的合适部分,再看图说说各自的想法。

  4、完成“练一练”

  重点让学生操作与填空。

  三、巩固练习,加深对公因数和最大公因数的认识

  1、练习五第1题。

  填好后让学生看图说说15和20的因数分别有哪些,公因数有哪些,最大公因数是几?

  2、练习五第2题。

  3、练习五第3题。

  先让学生独立完成,再具体说说找两个数的公因数和最大公因数的方法。

  4、练习五第4题。

  先出示第1组数,让学生判断,并说说是怎样判断的。然后完成先面几组。

  5、练习五第5题。

  鼓励学生用自己的方法找出每组数的最大公因数,并说说是怎样做的,怎样想的。

  四、全课小结

  提问:今天学习的是什么内容?什么是两个数的公因数和最大公因数?怎样找两个数的最大公因数?

  引导:你还有什么疑问?

公因数教学设计9

  第一课时

  一教学内容

  教材第79、80页的内容及第82页练习十五的第1题。

  二教学目标

  1.理解两个数的公因数和最大公因数的意义。

  2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  三重点难点

  理解公因数和最大公因数的意义。

  四教具准备

  多媒体课件,方格纸(每人一张)。

  五教学过程

  (一)导入

  1.提问:什么是因数?

  2.写出16和12的所有因数。

  提问:你是怎样找一个数的因数的?

  (二)教学实施

  1.出示例1。

  (1)引导学生审题,理解题意,在储藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。

  (2)学生以小组为单位,探究如何拼摆。

  每组4人,在课前印好画有长方形的方格纸上,每人选择方砖的一种边长,试一试,只要画满一条长边,一条宽边就可以。

  (3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。

  (4)通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。

  2.教学公因数和最大公因数。

  根据复习题中写出的16的因数、12的因数中找出公有因数,得出问题的答案,地砖的边长可以是1cm、2Cm、4Cm,最大的是4cm。

  老师用多媒体课件演示集合图。

  16的因数12的因数

  指出:1、2、4是16和12公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

  3.完成教材第80页的“做一做”。

  让学生独立在教材下面写一写,再说一说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。

  4.完成教材第82页练习十五的第1题。

  请学生填在教材上,说一说是怎样找的。

  (四)思维训练

  有三根小棒,分别长12厘米,18厘米,24厘米。要把它们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?

  (五)课堂小结

  通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

  第二课时

  一教学内容

  最大公因数(二)

  教材第81页的内容。

  二教学目标

  1.通过教学,使学生加深对公因数和最大公因数意义的理解,掌握找两个数最大公因数的方法。

  2.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

  三重点难点

  掌握找两个数最大公因数的方法。

  四教具准备

  投影。

  五教学过程

  (一)导入

  提问:什么叫公因数?什么叫最大公因数?

  (二)教学实施

  1.出示例2。怎样求18和27的最大公因数?

  (l)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

  (2)小组讨论,互相启发,再在全班交流。

  先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

  方法二:先找出18的因数:①,2,③,6,⑨,18

  再看18的因数中有哪些是27的因数,再看哪个最大。

  方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。

  27的因数:①,③,⑨,27

  方法四:先写出18的因数:1,2,3,6,9,18。从大到小依次看18的.因数是不是27的因数,9是27的因数,所以9是18和27的最大公因数。

  2.引导学生看教材第81页的“你知道吗”,指导学生自学用分解质因数的方法,找两个数的最大公因数。

  24和36的最大公因数=2×2×3=12。

  指出:两个数所有公有质因数的积,就是这两个数的最大公因数。

  3.完成教材第81页的“做一做”。

  学生先独立完成,独立观察,每组数有什么特点,再进行交流。小结:求两个数的最大公因数有哪些特殊情况?

  (1)当两个数成倍数关系时,较小的数就是它们的最大公因数。

  (2)当两个数只有公因数1时,它们的最大公因数也是1。

  第三课时

  一教学内容

  最大公因数(二)

  教材第82、83页练习十五的第2一9题。

  二教学目标

  1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

  2.培养学生抽象、概括的能力。

公因数教学设计10

  一、教材内容分析

  本课是九年义务教育新课程标准人教版五年级下册79-80页内容,本课内容是学生在学习了倍数和因数的基础上,学习求公因数和最大公因数的方法,为进一步学习约分的知识做准备,通过本节课的学习要使学生掌握求两个数的最大公因数方法,会求两个数的最大公因数。

  二、教学目标

  1、知识与技能

  (1)、使学生能根据提供的情境探索并掌握用求两个数的公因数和最大公因数的方法,会在集合图中表示两个数的因数和公因数。

  (2)、能看出一些特殊的两个数的最大公因数。

  2、过程与方法

  (1)、激发学生自主学习、积极探索和合作交流的良好习惯。

  (2)、使学生从不同的角度找出两个数的公因数和最大公因数的的区别和联系,从而培养学生的分析、归纳等思维能力。

  (3)、使学生在自主探索与合作交流过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  3、情感态度价值观

  (1)、通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望。

  (2)、对数学中两个数的最大公因数的相关知识感兴趣。

  三、学习者特征分析

  1、本班学生是一棵树完全小学五年级的学生;

  2、学生已经掌握了找一个数的因数和两个数的公因数的方法;

  3、学生已具备了继续学习求两个数的最大公因数的铺垫,对数学兴趣比较高,上课发言积极,个别学生发现问题的能力比较强;

  4、学生运用数学知识解决实际问题的能力和数学建模的能力还不强。

  四、教学重难点

  重点:理解公因数和最大公因数的意义,掌握求两个数最大公因数的.方法。

  难点:理解并掌握求两个数的最大公因数的方法。

  五、教学资源

  PPT课件、卡片

  六、教学过程

  一、预设情境,感受新知

  1、情境引入

  情境图→文字→表格

  最近杨老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。

  你知道杨老师对铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数”什么是整分米数?)

  2、合作探究

  (1)讨论

  用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)

  (2)交流

  A、交流边长是“4” 为什么?→你们觉得行吗?→铺满

  B、交流边长是“2” 出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满

  C、交流边长是“1” 铺一个角→你觉得长边、短边可以分别铺几块?→铺满

  二、探究新知

  1、认识公因数和最大公因数

  (1)讨论交流

  还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢? (宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)

  (2)抽象公因数概念

  我们发现边长4分米的地砖能铺满,而且是整数块,其它的都不行。那“4”与16和12到底有着什么特殊关系呢? (4不仅是16的因数又是12的因数。4是12和16的公因数)同意吗?(能听懂他的意思吗?说的是什么?)那我们就用以前的方法找找16、12的因数。16的因数有:1、2、4、8、16,12的因数有: 1、2、3、4、6、12你发现什么? (我发现1、2、4既是12的因数又是16的因数。)能不能简单的说说,它们是12和6的什么数吗? (1、2、4是12和16公有的因数,1、2、4是12和16的公因数)

  板书“公因数”说能说一说什么是公因数几个数共有的因数,就是这几个数的公因数那16和12的公因数有: 1、2、4

  (3)用集合圈表示我们可以用集合圈来表示两个数的公因数(点击课件出示两独立集合圈)

  这集合圈我们可以看成是16的因数,这一个集合圈我们可以看成是12的因数(课件动态显示两集合圈移动形成交集) 现在中间的表示什么呢?应该填?(生说师点击课件)

  那这圈里的(指左边、右边)填?表示?

  (4)认识最大公因数

  如果杨老师想用最少的块数铺好地面,可以选择边长是几分米的地砖?

  你是怎么想的? (从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)

  三、合作交流、探索方法

  大家刚才帮助杨老师解决边长可以几分米时,先找两个数的因数、然后圈出两个数的公因数,再找最大的公因数,就是我们求最大公因数的一般方法。会求两个数的最大公因数吗?求最大公因数:18和27 15和10两生板书交流反馈。想想看,还有没有更简单的方法呢?如果我指找出一个数的因数,你能找出两个数的最大公因数吗?现在只找出18的因数,你能找到18和27的最大公因数吗? “先找小的数18的因数,再看哪些是27的因数”

  那如果只找了27的因数呢? “先找27的因数,再看哪些是18的因数”你能找出10和15的最大公因数吗?这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。

  四、巩固练习、总结提升

  1、找出每组数的最大公因数:4和8 6和18 1和7 8和9

  2、小游戏找同桌学号的最大公因数

  五、全课总结(收获、自我评价)

  七、教学评价

  本科采用的学习评价有:

  1、个别评价:经过练习后学生自己对求两个数的最大公因数的评价。

  2、教师评价:适时、准确地评价学生在学习过程的闪光点 。

  3、全体评价:学生自己总结本课堂学会了哪些方面的知识。

  八、教学反思

公因数教学设计11

  教学内容

  《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

  设计思路

  这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

  教学目标

  1、使学生理解两个数的公因数和最大公因数的意义。

  2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

  4、培养学生抽象、概括的能力。

  重点难点

  1、理解公因数和最大公因数的意义。

  2、掌握求两个数的最大公因数的方法。

  教具准备

  多媒体课件、卡片

  教学过程

  一、导入

  1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

  2、分别写出16和12的所有因数。

  二、教学实施

  1、老师用多媒体课件演示集合图。

  指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。

  其中,4是最大的公因数,叫做他们的最大公因数。

  2、完成教材第80页的“做一做”

  先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

  3、出示例2。怎样求18和27的最大公因数?

  (1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

  (2) 小组讨论,互相启发,再在全班交流。

  (3) 老师用多媒体课件和板书演示方法

  方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

  方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。

  18的因数有:① ,2 ,③ ,6 ,⑨ ,18

  方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

  27的因数有:①,③,⑨,27

  方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。

  4、完成教材第81页的“做一做”。

  学生先独立完成,独立观察,每组数有什么特点,再进行交流。

  小结:求两个数最大公因数有哪些特殊情况?

  ⑴ 当两个数成倍数关系时,较小的`数就是他们的最大公因数。

  ⑵ 当两个数只有公因数1时,他们的最大公因数是1.。

  三、课堂练习设计(多媒体课件出示)

  选出正确答案的编号填在括号里

  1、9和16的最大公因数是( )

  A . 1 B. 3 C . 4 D. 9

  2、16和48的最大公因数是()

  A . 4 B. 6 C . 8 D. 16

  3、甲数是乙数的倍数,甲乙两数的最大公因数是( )

  A .1 B. 甲数C . 乙数D. 甲、乙两数的积

  四、课堂小结

  通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

  五、留下疑问

  有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?

  六、课堂作业设计

  教材82页第2题、第5题

  板书设计

  最大公因数

  例2:怎样求18和27的最大公因数?

  18的因数有:1 ,2 ,3 ,6 ,9 ,18

  27的因数有:1 ,3 , 9 ,27

  18和27的公因数有:1 ,3 , 9

  18和27的最大公因数是9

公因数教学设计12

  一、教学目标:

  1、理解两个数的公因数和最大公因数的意义。

  2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  3、培养学生抽象、概括的能力。

  二、教学重难点:

  理解公因数和最大公因数的意义。

  三、教具准备:

  多媒体课件,方格纸(每人一张)。

  四、教学过程:

  (一)复习导入

  1.复习。

  教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

  教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

  2.导入。

  师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

  (二)创设情境,引出问题

  今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

  学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

  师:你们3个为什么没有找到伙伴?

  生1:我的学号是1,既是12的`因数,又是16的因数,不知道该站在哪边才好。

  生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

  生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

  师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

  设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

  (三)求两个数的最大公因数

  1.明确方法,提出要求。

  师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

  课件出示教材60页例2:怎样求18和27的最大公因数?

  2.学生试做后,组内交流。

  3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

  (先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

  4.反馈练习。

  教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

  师:做完这道题,大家发现了什么?

  (学生讨论后汇报)

  (四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

  公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

  (五)谈谈这节课你有什么收获?

公因数教学设计13

  一.教学设计学科名称:

  北师大版数学五年级上册《找最大公因数》

  二.所在班级情况,学生特点分析:

  我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。

  三.教学内容分析:

  教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。

  四.教学目标:

  知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

  五.教学难点分析:

  教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  六.教学课时:

  一课时

  七.教学过程:

  (一)复习

  师:出示3×4=12,( )是12的因数。

  生:3和4是12的因数。

  (二)探究新知

  1、认识公因数和最大公因数

  (1)师:除了3和4是12的因数,12的因数还有哪些?

  生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。

  师:要找出一个数的全部因数,需要注意什么?

  生:要一对一对有序地写,这样才不会遗漏。

  师:照这样的方法,请你写出18的全部因数。

  生独立写后汇报:18的因数有:1、2、3、6、9、18

  (此时出示集合图)

  师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。

  生做后汇报师板书于圈中。

  (2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。

  生找出12和18相同的因数有:1、2、3、6

  师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。

  师:这里最大的公因数是几?

  生:最大是6。

  师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。

  板书课题:找最大公因数

  (此时出示集合图)

  师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论

  (生分组讨论)

  汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。

  师:请大家完成这个题。(生做后订正)

  2、探索找最大公因数的方法

  (1)列举法

  刚才我们找最大公因数的方法叫做列举法。(板书:列举法)

  请大家用这种方法找出下面每组数的最大公因数。 9和15

  (2)利用因数关系找

  师:请大家翻到书第45页,独立完成第一题。

  生汇报:

  8的因数: 1、2、4、8

  16的因数: 1、2、4、8、16

  8和16的公因数: 1、2、4、8

  8和16的最大公因数是 8

  师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:8是16的因数,所以8和16的.最大公因数就是8。

  师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)

  练习:找出下面每组数的最大公因数。 4和12 28和7 54和9

  (3)利用互质数关系找

  师:请大家独立完成第二题。

  生汇报:

  5的因数: 1、5

  7的因数: 1、7

  5和7的最大公因数是 1

  师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:5和7都是质数,所以5和7的最大公因数就是1。

  师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)

  练习:找出下面每组数的最大公因数。 4和5 11和7 8和9

  (4)整理找最大公因数的方法

  师:今天我们学习了用哪些方法找最大公因数?

  生:列举法,用因数关系找,用互质数关系找。

  师:我们在做题时,要观察给出的数字的特征选用不同的方法。

  (三)练习

  书46页3、4、5题。生独立完成,师巡视指导。

  (四)全课小结

  这节课你有什么收获?

  八.课堂练习:

  在括号里填写每组数的最大公因数

  6和18( ) 14和21( ) 15和25( )

  12和8( ) 16和24( ) 18和27( )

  9和10( ) 17和18( ) 24和25( )

  九.作业安排:

  完成练习册上的习题

  十. 附录(教学资料及资源):

  1、教师用书:北师大版五年级数学上册

  2、数字卡片

  十一. 自我问答:

  短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?

  教学反思:

  本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。

  在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。

  找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。

公因数教学设计14

  教学内容:

  人教版五年级第十册66-69页最大公因数。

  教学目标:

  1、理解公因数,最大公因数和互质数的概念。

  2、初步掌握求最大公因数的一般方法。

  3、培养学生思维的有序性和条理性。

  4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。

  教学重,难点:

  1、理解公因数,最大公因数,互质数的概念。

  2、求最大公因数的一般方法。

  教具准备:

  多媒体教学课件。

  教学过程:

  一,师生共研,学习新知:

  我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?

  出示课件:

  16的因数有:1、2、4、8、16

  12的因数:1、2、3、4、6、12

  那么既是16又是12的因数是:1、2、4

  16和12的公有因数中最大的一个是:4

  出示课件:

  16的因数:1、2、4、8、16

  12的因数:1、2、3、4、6、12

  8的因数:1、2、4、8

  师:我们就把1、2、4叫做16、12和8的什么呢?

  生:公因数

  师:4就是16、12和8的什么呢?

  生:最大公因数。

  师:请同学用自己的话说一说公因数是什么意思?

  生:几个数公有的因数,就叫公因数。

  生:就是几个数都有的因数,就叫公因数。

  师:同学谁能说一下什么又是最大公因数呢?

  生:几个数公因数里面最大的一个,就叫最大公因数。

  师生共同总结概念:

  公因数:几个数公有的因数,叫做这几个数的公因数。

  最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数

  二、巩固练习,加深理解:

  出示课件:

  同学们能不能找出15和18的公因数,再找出它们的最大公因呢?

  15的因数18的因数15的因数18的因数

  不清

  15和18的公因数

  三、合作探究,认识互质数

  1、5和7的公因数和最大公因数各是多少?

  5的因数:1、5.7的因数:1、7.

  5和7的公因数有:1.5和7的最大公因数是:1.

  2、7和9呢?

  7的因数:1,7.9的因数:1,3,9.

  7和9的公因数有:1.7和9的最大公因数是:1

  指名回答:并让学生说出自己的看法和理由。

  师总结:公因数只有1的两个数,叫做互质数。

  同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?

  四、深化练习、掌握方法:

  那么大家想一想18和30的最大公因数怎么去求呢?

  小组讨论方法:小组代表发言汇报讨论结果。

  师引导出用分解质因数的方法,

  18=2×3×330=2×3×5

  归纳出:18和30的公有的质因数是2和3,

  那么最大公因数就是2×3=6

  能不能用更简便的方法呢?

  把两个短除法合并成一个短除法

  21830→用公有的质因数2除

  3915→用公有的质因数3除

  35→除到两个商是互质数为止

  把所有的除数乘起来,得到18和30的最大公因数是

  2×3=6

  学生总结短除法求最大公因数的方法。

  求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.

  鼓励学生用不同的方法去完成练习。

  求12和20的最大公因数

  学生动手练习,师巡视指导,学生上黑板演示过程。

  五、小小能手、我来闯关:

  第一关:填一填

  1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是().

  2.8和9的公因数有(),最大公因数是()

  第二关:判一判

  1.公因数有1的两个数是互质数().

  2.12的因数只有2、3、4、6、12。()

  3.成为互质数的两个数一定都是质数.()

  第三关:做一做

  木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?

  六、全课小节、畅谈收获:

  学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。

  七、板书设计:

  最大公因数

  公因数:几个数公有的因数。

  最大公因数:公因数里最大的一个。

  互质数:公因数只有1的两个数。

  把18和30分别分解质因数

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  18和30的公有质因数是2和3,因此:

  18和30的最大公因数是2×3=6

  合并两个短除法

  21830→用公有的质因数2除

  3915→用公有的质因数3除

  35→除到两个商是互质数为止

  把所有的除数乘起来,得出18和30的最大公因数是2×3=6

  教学反思

  教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的.是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。

  1.借助操作活动,经历概念的形成过程。

  本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

  2.预设探究过程,增强学生主体意识。

  为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

  3.提倡思考方法的多样化。

  在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力

公因数教学设计15

  教学内容:

  青岛版数学四年级下册第七单元分数加减法信息窗一

  教学目标:

  1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。

  2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。

  3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。

  教学重点:

  理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。

  教学难点:

  理解用短除法求最大公因数的算理。

  评价任务设计:

  1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。

  2、教师对学生在学习活动中体会数形结合思想的评价。

  3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。

  教学过程:

  一、复习导入

  师:昨天,老师布置了这样一项课前作业。

  师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)

  师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)

  问:还有不同分法吗?(生答师演示)

  预设:汇报出错,比如4厘米——师引导观察:如果用边长4厘米的小正方形来分的话,长可以分几个呢?这样还能不能把长方形正好分完呢?

  师:其他同学还有不同意见吗?

  同位互相看一看各自是怎样分的,交流一下自己的想法!

  二、认识公因数和最大公因数

  1、教学公因数和最大公因数的意义,总结列举法

  师:通过研究我们发现,小正方形的边长可以是1厘米、2厘米、3厘米或者是6厘米,最多是几厘米呢?

  师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?

  生:1、2、3、6是18的因数也是24的因数。

  师:我们把18和24的因数都找出来,对比着看一看吧!

  师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)

  师:对比观察18和24的因数,你有什么发现?

  生:它们的因数中都有1、2、3、6、

  师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。

  师:公因数中哪个最大啊?生:6最大

  师:我们就把6叫做18和24的最大公因数。

  师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。

  师:刚才我们分别列举出了18和24的因数,又找出它们的公因数和最大公因数,这种找公因数和最大公因数的方法叫列举法。【板书:列举法】

  2、教学集合圈

  师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。

  24的因数

  18的因数

  【课件出示】

  123612346

  91881224

  师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。

  问1:现在你知道左边这一部分表示的什么吗?(指名答)

  右边这一部分呢?大家一起说!两个集合圈相交的部分呢?左半部分又表示什么呢?大家一起说右半部分表示的什么?

  师:下面请同位互相说一说集合圈中每一部分表示什么。

  师小结。

  师:现在给你一个集合圈你会填了吗?

  师:看到这道题你能不能直接填呢?那应该先怎么办?

  生:先找到16和28的因数和公因数,再填集合圈。

  师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。

  (生独立完成,师巡视)

  展示与评价

  师:谁来说一说你是怎么填的?(指名汇报)

  给大家说说你先填的什么?又填的什么?

  指名说一说,及时评价。

  师:我们再来看看这位同学的作业。

  师:同位互相检查一下,不对的改正过来。

  三、认识短除法

  1、讲解短除法

  师:同学们,除了用列举法找两个数的公因数和最大公因数。还有一种方法也能找出两个数的最大公因数,但是需要你用心观察才能发现,你们愿意接受挑战吗?

  师:请大家先把18和24分解质因数。

  师:谁来说说你分解质因数的'结果?

  师:请同学们仔细观察这两个式子,你有什么发现?

  生:我发现它们都有质因数2和3、

  师:18和24公有的质因数2和3与它们的最大公因数6之间有什么关系呢?生:2乘3等于6

  师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。

  师边板书边讲解……

  师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。

  问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)

  2、练一练

  师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!

  师:谁来说说你是怎么做的?(指名学生展示汇报)

  问:你认为他做的怎么样?

  四、练习与应用

  1、练一练(苏教版P27T1)

  师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!

  展示汇报

  师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)

  2、扎花束

  师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)

  问:同学们想一想这道题其实在求什么?

  师:选择自己喜欢的方法把它完成在练习本上。

  问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?

  2、数学知识

  师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!

  五、课堂总结:通过这节课的学习你有哪些收获?

【公因数教学设计】相关文章:

公因数教学设计05-14

《公因数和最大公因数》教学设计03-24

五年级下册《公因数和最大公因数》教学设计(精选5篇)03-24

《公因数和最大公因数》优秀的教学反思(精选7篇)03-17

《最大公因数》教学反思04-23

公因数公倍数教学反思04-12

《找最大公因数》教案08-26

公倍数和公因数教案03-03

五年级数学《最大公因数》教学反思03-27