《解决问题》教学设计

时间:2023-06-04 15:08:21 教学资源 投诉 投稿

《解决问题》教学设计

  作为一名老师,时常需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的《解决问题》教学设计,希望能够帮助到大家。

《解决问题》教学设计

《解决问题》教学设计1

  教学目标:

  1、让学生从实际问题的解决过程中感受“先乘除后加减”的道理。

  2、掌握含有两级运算(没有括号)的运算顺序,并能正确计算。

  3、培养学生养成认真审题、独立思考的学习习惯。

  教学预案:

  一、创设情景,提出问题

  提供:“冰雪天地”图:成人票:24元 儿童票:半价

  1、从图中你看到了哪些关于门票的信息?

  2、如何购门票,这样合理吗?

  二、团队协作,解决问题

  1、需要花多少钱?

  2、策略讨论,分析原因。

  三、得出结论,形成概念

  在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  四、巩固概念,变式提升

  1、如果有老师和同学去游玩,需要花多少钱?

  2、你还能提出其他数学问题吗?

  五、练习延伸,体验成功

  1、说出下面各题的运算顺序,不计算。

  203-134÷228+120×8

  97-12×6+4326×4-125÷5

  2、同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?

  3、果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?

  4、三、四年级学生进行体操比赛,其中三年级有240人,四年级有300人。每12人站成一排,四年级比三年级多站几排?

  六、课堂总结

  教师引导学生总结:今天这节课你学习了哪些知识?有什么收获?

  教材分析:这是第八册数学第6页例3及“做一做”,练习一中的`第5题~9题的教学内容。四则计算教学的目的到底是以什么为主?从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入。四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多,有的学生甚至对于“先乘除后加减”的运算顺序了然于胸。因此我不把四则混合运算顺序作为重点来教,而把它作为加强学生解决问题能力训练的一次好机会。

《解决问题》教学设计2

  教学内容

  苏教版小学数学四年级上册第65—67页。

  教学目标

  1.能根据解决问题的需要,初步学会用列表的策略收集整理相关信息,对表格中的信息进行分析,认识其中的数量关系,学会从条件入手或从问题入手,找出解决问题的方法,使问题得到解决。

  2.充分体会有关策略在解决问题过程中的价值,能自觉运用策略解决问题,获得解决问题的成功经验,提高学好数学的自信心。

  教学重点、难点

  1.在解决问题的过程中,初步体会用列表的方法整理相关信息的作用,感受列表是一种策略。

  2.会用列表的方法整理信息,会通过列表的过程分析数量关系,寻找解决问题的有效方法。

  教学过程

  一、创设情境,感知策略

  师:知道《田忌赛马》的故事吗?田忌一开始怎么比?后来田忌的朋友孙膑帮他想出了怎样的好方法?

  师:你们佩服孙膑吗?为什么?

  师:人们把这样巧妙的办法和好的计策称之为“策略”。其实在日常生活与数学学习中,常常要运用一些“策略”来解决问题。(板书课题:解决问题的策略)

  [设计意图:学生第一次接触“策略”,对策略的含义并不清楚。教学一开始,以学生熟悉且感兴趣的故事《田忌赛马》引入新课,让学生初步感受到选择合适的策略在解决问题的过程中是有效的、必要的。]

  二、合作交流,探究策略

  1.整理信息。

  师:国庆期间,家福乐超市文具柜的部分商品降价销售,你们知道超市为什么降价销售吗?(降价销售其实也是一种经营策略,目的是为了获取更多的利润。)我们来看看具体情况。

  师:图中小朋友在干什么?你愿意把自己看到的信息大声说出来吗?看谁观察得仔细,说得完整。同样的笔记本说明了什么?这么多信息你看了以后有什么感觉?

  (已知条件:小明买了3本笔记本用去18元,小华买了5本笔记本,小军用了42元。)

  师:思考:根据这些信息可以解决什么问题?

  师:我们先来解决第一个问题“小华用去多少元?”

  师:要解决“小华用去多少元”,这些信息都需要吗?你准备摘录哪些条件解决这个问题?

  师:在我们平时的学习生活中,经常需要把一些杂乱无章的信息有意识地进行筛选和整理,从而找出有用的信息来解决问题。(板书:整理信息)

  师:你能用自己喜欢的`方法把这些条件进行整理,让我们看得更加清楚一些吗?

  (学生动手整理,教师进行巡视,学生汇报结果。)

  展示学生列出的方法:(摘录条件、画线段图、列表……)

  2。 列表整理。

  师:同学们说了许多整理信息的方法,如果让你选择,你会把最喜欢的一票投给谁呢?为什么?(板书:列表整理信息)

  教师指导:教师选择学生列出的不规范的表格,引导学生认识表格的结构、理解表格里的内容,思考为什么每人购买的本数和所用的钱数要填在同一行。(买的本数和钱数是对应的,如买3本要用18元钱。)

  小明

  3本

  18元

  小华

  5本

  ?元

  3.分析数量关系并解答。

  整理好信息后,我们就来分析数量关系(板书:分析数量关系)

  求小华用去多少元,你是怎样想的?先独立思考并列式计算(同桌交流解题思路)。

  全班交流解题思路。

  4.小结:为了解决这个问题,我们采用了哪两种不同思路?谁来说说。

  (1)从条件入手:根据买3本用去18元,先求出1本的价钱。

  (2)从问题入手:要求买5本需要多少元,也要先求出1本的价钱。

  (板书:从条件入手 从问题入手)

  三、解决问题,体验策略

  1.解决问题。

  师:解决了小华的问题,赶紧来解决小军的问题。你能选择有关的信息列表进行整理,并列式解答吗?出示空白表格:

  (1)学生书上填表,并列式计算。(教师巡视、指导。)

  (2)四人小组交流解题思路。

  (3)学生汇报。

  师:与小华的问题一样,要解决小军的问题,我们也选择了小明的相关信息,这是为什么呢?(可以求出笔记本的单价)不能选择小华的信息吗?为什么?(其实小华的也可以,但如果计算小华的总价发生错误,就会把这个错误带到解决小军的问题上来,因此我们一般选择给定的条件。)

  2.回顾解决问题的过程。

  提问:通过两次用表格整理条件和问题,你体会到什么?(利用表格分析数量关系比较容易)出示两张表格。

  师:解决同一情境中的两个问题,我们用了两个表格,麻烦吧?能不能把两次的表格合并成一个表格呢?说说你是怎么合并的?(学生说,再出示表格。)

  小明

  3本

  18元

  小华

  5本

  ()元

  小军

  ( )本

  42元

  师:如果不考虑姓名,而把研究的注意力放在数量与总价的关系上,我们把这张表格再简化:

  3本→元

  5本→( )元

  ( )本→42元

  学生在书上第66页填出括号里的数。

  观察:从左往右看,你发现了什么?(本数与钱数对应,每本价钱不变)要求5本多少元和42元买几本,都要先算出什么?

  观察:从上往下看,又发现什么?如果买10本,要付的钱跟42元比会怎样?

  3.反思交流,体验策略。

  探讨:上述问题是用什么策略解决的?这种策略有什么特点?

  [设计意图:本环节旨在让学生感受列表整理信息的价值,了解用表格整理信息的优势,掌握列表整理信息的方法,学会利用表格分析数量关系、解决问题,形成解决问题的策略。]

  四、巩固深化,提升策略

  1.完成教材第67页第1题。

  先观察题目中的条件和问题,然后将它们列表整理。(整理在书上即可)比比谁找得准,写得快!

  分析表格中的信息,独立解答。

  2.师:NBA篮球赛看过吗?知道姚明吗?老师收集了一些关于他投篮比赛的情况。用画面及录音出示相关信息:姚明在两场比赛中共投篮30次,投中21次,得42分。奥尼尔在三场比赛中共投篮40次,投中30次,得60分。①假设姚明保持这样的状态不变,下面的五场比赛中姚明一共能得多少分?②姚明平均每场比奥尼尔多得多少分?

  [设计意图:通过新颖和富有挑战性的问题,鼓励学生灵活整理信息、创造性地解决问题,避免机械地记忆和简单地模仿。]

  五、总结交流

《解决问题》教学设计3

  教学内容:

  教材第68~69页例1,“练一练”,第72页练习十一第1~3题。

  教学目标:

  1.使学生初步学会运用假设的策略分析数量关系,能根据问题的特点确定假设的思路,理解假设的解题过程,能运用假设的策略解决相应的实际问题。

  2.使学生经历用假设解决实际问题的过程,感受假设策略对于解决特定问题的价值,进一步发展分析、推理和解决问题的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设策略时总量不变的实际问题,认识假设的策略。

  教学难点:

  运用假设策略分析数量关系。

  教学准备:

  多媒体课件

  教学过程:

  一、激活旧知,引入新课。

  1.口答列式。

  (1)把720ML果法倒入9个相同的杯子里,正好都倒满,每个杯子的容量是多少毫升?

  (2)用600元买了5把相同的椅子,这种椅子的单价是多少元?

  指名口版式,并说说数量关系式。

  二、解决问题,认识策略。

  1.出示例1,理解题意。

  指名学生读题,说出题里的条件和问题。

  提问:和刚才解答的问题比,这个实际问题复杂在哪里?

  引导:你是怎样理解问题中数量之间的关系的?同桌互相说一说。

  交流:怎样理解题中数量之间的系?

  明确:根据“720毫升果汁倒入6个小杯和1个大杯,正好倒满”,可以知道6个小杯的容量+1个大杯的容量=720毫升;“小杯的容是一是大杯的1/3”就是大杯的容量是小杯的3倍,1个大杯容量等于3个小杯的容量。

  2.思考交流,探究思路。

  引导:现在有两种大小不同的杯子,这是解决题复杂的地方,根据题里两种杯子容量间关系的理解,你有办法解决这个问题吗?自己先想一想,再和同桌说一说,看哪些同学能想到办法。如果思考有困难,也可以画图看一看。

  指名交流想法,引导学生理解:

  (1)画示意图看,1个大杯容量,可以看作果汁倒在9个小杯里;或3个小杯容量等于1个大杯容量,可以看作果汁倒在3个大杯里。

  (2)假设把果汁全部倒入小杯,就是9个小杯,可以先求出小杯容量再求大杯容量。

  (3)假设把果汁全部倒入在杯,就是3个大杯,可以先求出大杯容量再求小杯容量。

  (4)假设每个小杯容量是X毫升,大杯容量就是3X毫升,可以列方程解答。

  小结:通过交流,虽然大家有借助画图的,有直接思考的,但基本上是两种思路:一种是假设把果汁倒入同一种杯子,或者全看作大杯,或者全看作小杯;另一种是假设每个杯容量是X毫升,大杯容量就是3X毫升。

  3.解决问题,体会策略。

  引导:现在你能解决问题了吗?请选择一种方法列式解答,并进行检验。

  学生列式解答并检验,教师巡视,选择不同解答方法的学生进行板演。

  集体评析板演的.不同方法,弄清各种算法中每一步算出的是什么。

  讨论板演的不同方法,明确:检验时要看求出的结果是否符合题目中的两个已知条件,就是算出6个杯和1杯总量720毫升,小杯容量是大杯的三分这一。

  追问:这些不同的解题方法里有什么共同的地方?用假设的方法有什么作用?

  指出:解题方法虽然不同,但都是用了假设的方法,这样可以使大杯和小杯转化为同一种杯子,即使用方程解答,也是假设小杯容量为X毫升,大杯容量就是3X毫升,实际上就是把1个大杯转化成3个小杯,这样就使问题变得比较简单。

  三、应用巩固,内化策略。

  1.做“练一练”。

  学生独立解答,指名板演。

  交流:这里是怎样用假设策略的?每一步算式表示什么?

  追问:为什么这道题假设全部买椅子而不是假设全部买桌子?

  指出:为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也很重要。

  2.做练习十五第1题。

  学生独立完成填空,再同桌互相说说自己的想法。

  全班交流。

  指出:解决题这题时,要先弄清两个数量之间的关系,再通过假设正确地把两个数量转化成一个数量。

  3.做练习十一第2题。

  让学生填充并交流填充结果。

  提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?

  学生独立完成解答,指名板演。

  集体交流,让学生说说解答的过程。

  四、全课总结,布置作业。

  1.交流认识。

  提问:今天学习的实际问题为什么要用假设的策略解决?通过今天的学习,你对假设的策略有了哪些认识?还有什么体会?

  五、作业布置。

  补充习题相对应页。

《解决问题》教学设计4

  【教学内容】

  教科书第73~75页例1、例2及课堂活动。

  【教学目标】

  1、能运用两三位数加减法的知识解决简单的实际问题,掌握分析解决这类问题的多种方法。

  2、初步培养学生的应用意识和解决实际问题的能力。

  3、渗透数学来源于生活的思想,体会数学的价值。

  【教学重点】

  根据已知信息分析问题,寻找解决问题的方法。

  【教学难点】

  引导学生根据相关的信息提出相应的问题,合理灵活地解决问题。

  【教学准备】

  实物投影仪、多媒体课件。

  【教学过程】

  一、情景引入

  (1)教师:我们班的`彭远是个爱学习的孩子,他今天来到书店,准备买一本字典和一套书。(出示例1图)

  提问:一本字典和一套书的价格分别是多少元?你能根据这两个信息提出什么数学问题呢?

  学生可能会提出:

  ①买1套书比1本字典贵多少元?

  ②买1套书和1本字典共要多少元?

  提问:怎么解决这些问题呢?

  学生口头列式解决问题,从而复习加减法的一步计算问题。

  (2)彭远手里拿出100元递给售货员。

  教师:看到彭远买书的情况,你想到了什么?

  学生可能有以下回答:

  揭示课题:说得好!今天我们就一起来帮彭远解决这样的问题。

  板书课题:解决问题。

  二、探究新知

  1、教学例1

  (1)小组探究:小朋友帮彭远算一算,要买1套书和1本字典,售货员应找给他多少元呢?试着把你们讨论的每一步算式写出来。学生汇报交流,并在投影仪上展示算法,可能得到以下3种:

  方法1:100-27-43=30(元)

  方法2:100-43-27=30(元)

  方法3:27+43=70(元)

  100-70=30(元)

  (2)理清思路,明确方法。

  提问:能解释一下你为什么这样算吗?

  指名让学生解说每一种方法的每一步算的是什么。

  (3)小结。

  要求应该找回多少元,我们可以从100元里依次减去1本字典和1套书的价钱,用连减法计算;也可以从100元里减去1本字典和1套书的价钱之和,先算加后算减。无论用哪种方法,这道题都需要计算两步。

  2、教学例2

  (1)教师:彭远不仅爱学习,而且还是家里的账房先生呢!你瞧,他把爸爸妈妈的收入、支出都记在账本上了。出示表格:4月1日到15日的收支记载。

  4月1日 爸爸工资收入920元

  4月1日~14日 支出680元

  4月15日 妈妈工资收入970元

  4月15日~30日 支出550元

  结余

  提问:从表中你知道了彭远家收支的哪些信息?可以解决什么问题?

  怎样求出4月1日至15日彭远家结余了多少元呢?

  独立尝试解决,全班交流得出以下方法:

  920-680+970920+970-680970-680+920

  (2)在表中补充4月15日~30日的支出记载。

  提问:现在又告诉了我们什么信息?可以解决什么问题呢?

  当学生提出“到30日还有多少元”时,教师说明:“到30日支出后剩下的钱就叫做结余。”

  (3)小组探究:现在已知15日~30日支出550元,你能帮彭远算出4月份的最后结余吗?

  小组代表汇报,展示各种方法:

  小结:刚才同学们根据自己的理解,采用了不同的方法帮彭远同学解决了4月份他家的收支结余问题,真能干!

  提问:你们看,彭远家4月份的收入和开支合理吗?为什么?

  教师:彭远家一个月的工资除了安排生活开支外,还有一部分结余,说明他们家的生活安排合理,也许这也有彭远这个小账房先生的功劳哟。我们学好了数学,也可以当好家里的小助手呢!

  三、课堂活动

  (1)第74页第1题。先让学生发现信息:小明从家乡到重庆,坐汽车行了120千米,坐火车行了270千米。学生提出问题,再独立解决后交流。

  (2)第75页第2题。学生先观察图,明确信息,并提出数学问题,再独立解决。

  (3)第77页练习十一第4、5题。

  四、独立练习

  第76~77页练习十一的第1~3题。

  五、全课总结

  教师:这节课我们一起解决了什么样的数学问题?你觉得解决加减法的两三步计算的问题,要注意些什么?还有什么不理解的地方吗?

《解决问题》教学设计5

  教学目标:

  1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  3、培养学生良好的解答应用题的习惯。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、复习铺垫,引入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的`?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

  (1)学生自己解答,然后交流解答方法。

  (2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

  二、探究新知。

  1、教学例5

  (1)学生再次读题,理解题意。思考和讨论下面的问题:

  ①问题中有哪三种量?哪一种量一定?哪两种量是变化的?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (3)根据正比例的意义列出方程:

  12.88=χ10

  解:设李奶奶家上个月的水费是χ元。

  8χ=12.8×10

  χ=128÷8

  χ=16

  答:李奶奶家上个月的水费是16元。

  (4)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

  (2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

  (3)学生独立解答。

  (4)指名板演,全班交流。

  三、巩固提高。

  做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  四、课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  五、课堂作业。

  教科书P62练习九第3、7题。

《解决问题》教学设计6

  教学内容:

  苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。

  教学目标:

  1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。

  2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

  3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  能有序、有效地思考、分析实际问题中的数量关系。

  教学难点:

  感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

  教学准备:

  课件、导学单、教具

  教学过程:

  一、复习铺垫

  1、出示下面的问题,让学生列式解答。

  把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?

  数量关系:()个小杯的容量=720毫升

  口头列式解答

  2、出示例1:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。已知小杯的容量是大杯的,小杯和大杯的容量各是多少毫升?

  提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)

  3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)

  【设计说明:创设倒果汁的问题情境,呈现对比强烈的可以直接平均分和不能直接平均分的问题,引导学生通过比较体会新的问题的结构特点,形成认知冲突,进而产生把复杂问题转化成简单问题的心理需求,激发进一步探索解决问题策略的'欲望】

  二、探索策略

  1、教学例1。

  (1)理解题意。

  谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你

  能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。

  揭示:6个小杯的容量+1个大杯的容证=720毫升

  大杯的容量x =小杯的容量小杯的容量x3=大杯的容量

  (2)确定思路。

  谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。

  反馈:请把你的解题思路分享给大家。

  学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:

  思路一:假设把720毫升果汁全部倒入小杯。

  问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。

  思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。

  思路三:列方程解。

  提问:设小杯的容量是x毫升,1个大杯的容量可以怎样表示?可以根据哪个数量关系式列方程解答?

  小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。

  (3)列式解答并检验。

  谈话:选择一种方法完成解答,并检验解题的过程和结果。

  完成解答后,让学生说说列式、检验的方法和结果。

  【设计说明:引导学生通过对题中条件和问题的梳理,找到数量关系,并画图对数量关系进行理解,可以帮助学生正确地理解题意,感知题中条件和问题之间的联系,打开寻求解题方法的思路。针对解决问题的困难,启发学生思考使复杂问题变得简单的方法,既可以激活学生已有的解决问题经验,又使学生的探索活动有了明确方向,进而产生假设的需要,找到解决问题的方法。展示并交流学生中出现的不同的解决问题思路并通过师生对话帮助学生理解,有利于学生体会用假设的策略解决问题的思考过程,感受假设的策略在解决问题过程中的作用。在列式解答的同时,提出检验的要求,有利于学生加深对题中数量大系的理解,进一步养成检验的良好习惯】

  (4)回顾反思。

  问题:解答例1时,我们遇到了怎样的因难?是怎样解决这一困难的解决问题时运用了什么策略?说说你对假设这一策略的认识和体验。【设计说明:及时反思提炼,引导学生进一步体会“为什么假设”“怎样假设”等问题,以强化对“假设”策略的体验。】

  (5)教学第二种思路。

  谈话:刚才我们假设把720毫开果计全部倒入小怀,顺利解决了问题。这道题还可以怎样假设?假设把720毫开果计全部倒入大杯,可以倒满几个大杯?你能根据这样的假设算出结果吗?

  学生独立思考,列式计算,教师巡视。

  指名交流解题时的思考过程,以及列式计算的过程和结果。

  (6)比较和回顾。

  比较:请同学们比较假设全部倒入大杯和全部倒入小杯这两种假设方法,想想,它们有什么相同的地方?

  提回:通过解答上面的问题,你有哪些收获和体会?

  谈话:假设是解决问题的常用策略,运用假设的策略,可以把复杂的问题变成简单的问题。请同学们回忆一下,在过去的学习中,我们曾经运用假设的策略解决过哪些问题?

  让学生先在小组里说一说,再组织全班交流。

  【设计说明:假设“把720毫升果计全部例入大杯”的思路,由学生自己提出,并通过独立思考解决问题,促使学生再次经历和体验运用假设的策略解决问题的过程,获得对假设策略更深刻的感悟。比较两种假设思路的联系。并交流自己的收获和体会,目的是帮助学生梳理运用假设策略解决问题的方法。以及在解决问题过程中积累起来的经验,进一步提升对策略的认识和感悟;回顾曾经运用假设的策略解决过哪些问题,意在引导学生从策略的高度重新审视过去的学习中解决一些问题的过程和方法,以促进策略的内化,形成策略意识】

  2、完成“练一练”。

  (1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。

  (2)让不同思路的学生展示自己解题的过程。

  【设计说明:先让学生说一说可以怎样假设,再独立完成解答,并交流不同的假设思路,突出了本课的教学重点,有利于强化学生对假设策略的体验】

  三、巩固练习

  完成练习十一第1—3题。

  四、课堂总结

  今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?

《解决问题》教学设计7

  教学内容:

  苏教版五年级数学(上册)第94-95页例1及随后的“练一练”,练习十七第1-3题。

  教学目标:

  1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

  2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  让学生体会策略的价值,并使学生能主动运用策略解决问题。

  教学难点:

  在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学准备:

  课件、小棒、表格。

  教学过程:

  一、谈话导入。(2分钟)

  谈话:同学们,我们以前学到过解决问题的策略,想一想:我们都学过哪些策略啊?(板书:从条件想起,从问题想起,画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略。

  二、教学例1。(20分钟)

  (一)弄清题意,引发需求

  1、出示例1:王大叔用22根1米长的木条围一个长方形花圃,怎样围面积最大?

  2、(指名读题):从题中你能获得哪些数学信息?你还能发现题目当中隐藏的信息吗(2人答)?(长方形的周长是22米)(掌声)

  师:周长一定是22米,是保持不变的,长和宽也会像周长这样保持不变吗?长和宽在变化,那么面积也就有大(顿)有小。

  师:长和宽可能会是几米?指名答 (板书: 长: 9 宽: 2 )

  他猜得对吗?再指名答理由(2人)。(板书:长+宽:22÷2=11(米) )

  设疑:还有不同的围法吗?(有)大家想一想:在这么多围法当中(板书:),要想知道怎样围面积最大,可以怎么做?(把所有围法都列举出来)大家想不想亲自动手来围一围?

  (二)尝试列举,感知策略

  1、分层提出要求:

  ?请你用22根小棒摆出不同的长方形,将结果填写在记录单中。

  ?也可以直接填写记录单,再通过摆小棒来验证自己的猜想是否正确。

  学生操作,师注意收集(A:遗漏B:重复C:全但无序D:有序)的表格进行投影展示。

  2、比一比:大家更欣赏哪种记录方法?(D)为什么?(板书:按顺序)按顺序列举有什么好处?(板书: 不重复 不遗漏)

  师:这位同学真了不起,掌声送给他。(掌声)

  师:请刚才没有按顺序填写的同学改成按顺序填写,老师也来改一改。( 补齐板书:长(m):10 9 8 7 6

  宽(m): 1 2 3 4 5 )

  7、同学们数数看,一共有多少种不同的围法?(5种)现在你知道怎样围面积最大吗?(长6米,宽5米)你是怎么知道的?

  (补齐板书:面积(㎡):101824 2830)看来我们还要对列举出来的结果进行分析、比较,这样才能选出我们想要的。

  8、小结揭示课题:像刚才这样把事情发生的所有结果按照一定的顺序一一列举出来,也是一种解决问题的策略,我们通常就称它为“一一列举”的策略。(板书:——一一列举)齐读课题。

  (三)反思回顾,加深理解

  1、提出要求:回顾刚才解决问题的过程,你有什么体会?(列举能帮助我们解决问题,列举时要有序思考,对列举的'结果要进行比较)

  2、进一步要求:其实列举的策略同学们并不陌生。大家思考一下:在以前的学习中,我们曾经运用列举的策略解决过哪些问题?小组交流。(如:一年级:10的分与合)

  追问:用列举的策略解决问题有什么好处?在列举时需要注意些什么?

  过渡:王大叔有个女儿叫小芳,他送给小芳一个礼物,是什么呢?对,小闹钟

  三、拓展应用,丰富体验。(16分钟)

  1、出示“练一练”第1题。(突出“有序”)

  (1)指名读题,指名板演。

  (2)学生尝试解答,组织交流反馈:重点让板演的学生说说是怎样列举的。

  过渡:你们喜欢学校的饭菜吗?小芳也很喜欢,让我们来看一看小芳所在学校食堂的饭菜情况。

  出示练一练第二题。

  进行荤菜搭配时,可以按表中的样子从荤菜想起,也可以从素菜开始一一列举,一共有12种不同的搭配。

  过渡:小芳有一个爱好是上网,在课余时间经常通过浏览一些网站来增长自己的见识。大家是否知道网站为了及时发布最新的消息,都需要定期更新。我们一起来了解一下。

  2、出示“练习十七”第2题。(突出“对结果要比较、观察”)

  (1)指名读题,师引导学生观察A网站怎样更新后再提出要求:先在下表里画一画,再回答。

  (2)组织交流反馈:重点突出对列举的结果要观察、比较。

  联系生活:上网确实很好玩,但同时郑老师也对大家提一个小小的要求:希望大家要做到“文明上网、适度上网”,千万不能沉迷于网络。

  过渡:小芳除了喜欢上网之外还有一个爱好是收集邮票,先课件出示4张邮票(师介绍“邮票”,认识邮票面值),再课件出示问题(师介绍“邮资”:就是指邮票的面值之和。)

  3、出示“练习十七”第3题。(引出分类列举的思想)

  提问:你打算怎样解决这一题?指名回答,生口头说出按怎样的思路来列举即可。

  四、总结全课

  同学们,这节课我们学了什么策略?你有哪些收获?还有什么要提醒大家的?(列举时需要注意什么)

  同学们,在我们的生活中,采用“一一列举”的策略常常可以使复杂的问题变得简单,使混乱的思维变得清晰,这正是我们学习数学的魅力之所在。

《解决问题》教学设计8

  教学目标:

  1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、导入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的.?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。

  我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。

  二、揭示目标:

  1、进一步熟练地判断成正、反比例的量。

  2、学会用比例知识解答比较容易的应用题

  三、探究新知。

  例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?

  自学指导一:

  1、理解题意,用以前学过的方法解答。

  2、题中有哪两种量?它们成什么比例关系?并说出理由。

  3、根据这样的比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?

  4、解比例,检验,作答。

  小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  解:设李奶奶家上个月的水费是χ元。

  8χ= 12.8×10

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元。

  检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?

  自学指导二:

  1、题中有哪两种量?它们成什么比例关系?并说出理由。

  2、根据这样的比例关系,设要捆x包。你能列出等式吗?

  3解比例,检验,作答。

  检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

  交流总结:解答用正、反比例解的应用题的步骤:

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

  四.巩固延伸:

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?

  2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  3、500千克的海水中含盐25千克,120吨的海水含盐几吨?

  课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  课堂作业。

  教科书P62练习九第3、7题。

  板书设计:

  用比例解决问题

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

《解决问题》教学设计9

  教学内容

  义务教育课程标准实验教科书青岛版小学数学五年级下册第139页的内容。

  教学目标

  1、让学生经历回顾与探索运用转化策略解决问题的过程,初步感受转化策略的价值。

  2、使学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  3、使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,获得成功的体验。

  教学重点

  感受“转化”策略的价值,会用“转化”的策略解决问题。

  教学难点

  会用“转化”的策略解决问题。

  教学过程

  课前交流,孕伏转化策略:

  教师:同学们,你听说过曹冲称象的故事吗?(听说过)

  教师:好的故事总能给人以启迪,从这个故事中,你受到了哪些启发呢?学生自由交流感受,教师适时小结:曹冲能将复杂的事情与简单的事情相转化,从而巧妙的解决了问题,真是有志不在年高,了不起,相信同学们也会有不俗的表现。

  一、直观演示,发现转化策略

  课件出示:

  师:请你仔细观察,认真思考,哪个图形面积大呢?拿出彩色题纸,可以用笔画一画、算一算,想办法比较出哪个图形的面积大?

  师:有答案了吗?哪个图形的面积大?谁来说说。

  生1:两个图形的面积相等。生2:两个图形的面积相等。

  师:你是如何比较出来的?

  生:(边演示边说)我们把这块切开放到这块,都变成了长5个格、宽4个格的长方形。

  教师注意引导学生说出方法,如何平移、旋转的?

  师:听明白了吗?想的巧妙,讲的也非常清楚。谁再来说一说?

  师:原来的图形不规则,不容易比较大小。同学们都是利用了图形凹凸的特点想到了这个好办法,非常善于观察、思考。下面我们再来清晰的演示一下这个变化过程。请看,(课件演示)平移,旋转,瞧,哪个图形面积大?(相等)真是一目了然,原来的两个不规则图形通过平移、旋转都变成了规则的的图形。 (板书:不规则图形 规则图形)你们知道吗,这是一种解决问题的策略,这种策略就叫转化(板书课题)

  师:这样转化,什么变了?什么没变?

  生:周长变了,面积没变。

  师:还有什么变了?(形状变了。)

  师:你抓住了问题的关键,的确,这样转化,形状变了,面积却没变。(板书:形变积不变)

  二、唤醒记忆,回顾转化策略

  1.图形面积、体积方面的应用。

  师:同学们,其实,在以前的学习中,我们就经常用到转化的策略解决问题,比如说一些图形的面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?自己先想一想,然后跟小组的伙伴交流交流。

  师:有的同学迫不及待的想说了,谁来说?

  生:在学习图形的面积时,三角形的面积。把两个完全一样的三角形拼成一个平行四边形。

  师:这是把一个三角形的面积转化成了平行四边形面积的一半。没错,这就是转化。

  师:还有谁想说?

  生:把两个完全一样的梯形拼成一个平行四边形。

  师:这是把什么转化成什么?

  生:梯形转化成平行四边形

  师:准确的说,这是把梯形转化成平行四边形面积的(一半)

  这也是转化。还有吗?

  生:把平行四边行转化成长方形。

  生:圆也是把圆分成若干个小扇形,然后再拼成一个近似的长方形。

  生:圆柱是把圆柱转化成长方体。

  师:这也是用转化解决的新问题。

  课件出示:

  平行四边形的面积公式推导 三角形的'面积公式推导

  梯形的面积公式推导 圆的面积公式推导

  圆柱的体积公式推导 圆锥的体积公式推导

  师:大家来看,我们曾经用转化的策略解决了这么多新问题。选一个你最喜欢的、或者感觉有困难的,同位互相说一说。

  2.数与计算方面的应用。

  师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且,在看似简单的计算中也蕴含着转化,回忆一下,在学习数与计算时,哪些地方用到了转化的策略呢?

  生:小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的……

  出示:2.5×0.4 1.25÷0.5

  + ÷

  师:请看,这儿有一组题,可以动笔算一算,体会体会转化的作用,看看从中你又能发现什么,然后在小组内交流交流。

  (学生活动是巡视关注:是否会表达。)

  生:2.5×0.4是把小数乘法转化整数乘法。

  生:1.25÷0.5是把小数除法转化除数是整数的除法。

  师:说的真好,谁能像他这样,举个例子也说说自己的发现。

  生:计算 + ,是把异分母分数转化成同分母分数。

  师:说得真完整。

  师:很高兴你和大家分享你的发现,重复的我们就不说了,谁还有不同的发现?

  师:在计算这几个题的时候,我们都用到了转化的策略,转化前和转化后有什么关系?

  生:得数相同。

  师:你可真了不起,一下就抓住了转化的实质,转化前和转化后结果不变。(板书:得数相等)

  三、实践应用,体验转化策略

  1.巧用转化写分数。

  2.巧用转化求周长。

  鼓励学生独立做在作业纸上,然后,组织汇报、交流。

  师:周长各是多少厘米?有答案了就举手。

  师:左边图形的周长是多少?(16厘米)

  师:右边图形的周长可有难度了。

  生:也是16厘米。

  师:你怎么想的?

  学生边指边说想法。

  师:你是想把这四条边平移是吗?

  师:大家来看,他是把这个图形想象成了什么?(长方形)能行吗?

  师:我们来看一下(课件演示)真像大家想的那样,这是把什么转化成什么?

  生:把不规则图形转化成长方形。

  师:这样转化什么变了,什么没变?

  生:面积变了,周长没变。

  师:还有要补充的吗?

  生:形状也变了。

  师:咱们同学不仅会观察,还很会想象。我们在用转化策略解决问题的时候观察很重要,想象也很重要。感受到用转化策略解决问题的乐趣了没有?我们再来解决一个问题。

  3.巧用转化求面积与周长。(只列式,不计算。)

  师:请同学们认真观察,大胆的想象,仔细的思考。要求这个图形的面积,如何转化呢?

  师:这么快就会了,谁来说?

  生:能转化成一个半圆。

  师:怎么转化呀?

  生:把那块割下来,补到缺少的那块。

  课件演示

  师:是这样吗?这样果真就转化成了一个半圆。看来咱们同学用转化解决问题已经得心应手了。不过这个问题要变一下

  师:如果要求这个图形的周长,该怎样转化呢?

  生1:把左边的半圆平移到右边,转化成一个小圆,用大圆周长的一半加上小圆的周长。

  师:还有不同的想法吗?

  生2:整个一个图形可以转化成一个大圆。

  师:怎么就能转化成大圆的周长?

  引导学生思考大小圆之间的关系。

  生:大圆的周长是小圆周长的2倍。

  师:你怎么知道大圆的周长就是小圆周长的2倍?

  生:大圆半径是小圆的2倍,大圆周长也是小圆的2倍,小圆的周长是大圆的二分之一,合起来就是一个大圆的周长。

  师:咱们同学们真了不起,想到了不同的转化方法,并且这种转化的方法使问题变得非常简单。

  4、巧用转化计算。

  出示: + + +

  师:继续我们的探索之旅,你准备怎样解决这个问题?做在作业纸上。

  生:通分,都变成分母是16的分数。

  师:可以。通分也是一种转化,再仔细观察算式,你能发现其中蕴含的规律吗?

  生:每个分数的分子都是1,分母依次乘2。

  师:你能试着再往下写两个分数吗?

  生: + + + + +

  提问:如果是这个算式,你还想用通分去做吗?那有没有更简便的方法呢?

  课件出示正方形图

  引导学生分析涂色部分的大小可以用1减去空白部分的大小,1-

  师:明明是个加法算式,怎么变成减法算式了?

  生:因为这里还空缺一个 。

  师:听明白了吗?这位同学借助图形帮助进行算式的转化,非常善于观察和思考。

  5.关注生活。

  如何求1张纸的厚度? 如何求1个灯泡的体积?

  四、畅谈收获,提升转化策略

  师:通过今天的研究探索,你有哪些收获?

  学生交流。

  师:看来,大家的收获真不少,最后,有两句话想与同学们分享分享。

  出示:

  解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。

  ——数学家路莎彼得

《解决问题》教学设计10

  授课内容:

  苏教版数学四年级第八册解决关于面积计算问题的策略P89~90

  授课类型:

  新授

  教学目标

  1、让学生学会用画图或列表的策略整理有关长方形面积计算问题的信息,会解决数量关系比较隐蔽或稍微复杂的长方形面积计算问题。

  2、让学生进一步积累解决实际问题的经验,增强解决问题的策略意识,发展形象思维和抽象思维,获得解决实际问题的成功体验,提高学好数学的信心。

  重点难点

  重点:让学生在探索解决问题方法的过程中,感受到用画图和列表的策略整理信息的必要性,增强运用策略意识,提高运用策略水平。难点:让学生在不同的问题情境中运用策略富有个性地解决问题。教学准备

  多媒体课件

  教学过程

  一、导入课题。

  同学们,上新课前,老师给大家讲个小故事。有一天,一位哑巴走进商店想买一把锤子,他用手语比划了好几遍,店主硬是不明白他想买什么,哑巴灵机一动,做了一个敲钉子的手势,店主就立刻明白了哑巴想买把锤子。此时来了一位盲人,他也想买一把锤子,你们猜

  他会怎么做呢?为了买锤子,哑巴和盲人,采用的方法不一样,这些方法我们称“策略”,可见,策略的选择是因人、因时、因事而各不相同。今天这节课,我们就来学习数学中解决问题的策略(板书课题)

  二、新课展开。

  1、情景创设,呈现问题。

  香港迪斯尼乐园,去过吗,想去吗。这是迪斯尼乐园的喷水池,喷水池周围有四个长方形的花坛分别种有郁金香、月季花、兰花和蝴蝶花。建筑师们在修建工程中,遇到了些数学问题,看看,我们能帮他们解决吗?首先让我们走进郁金香花坛。

  ⑴1号长方形花坛里种的是郁金香,花坛长8米,在修建时,花坛的长增加了3米,这样花坛的面积就增加18平方米,原来花坛的面积是多少平方米?

  从这题中你们得到了哪些数学信息?

  想想看,我们能用什么策略把这些信息整理得更清楚些呢?谁来说说看(生:整理文字、列表、画图等)

  用你喜欢的方法在草稿本把这道题的信息整理一下。(教师巡视,收集资料)

  ⑵组织交流。

  让学生展示自己的策略(1、整理文字或列表的方法,2、画图的方法等)

  整理文字:用的是什么策略?介绍一下。

  列表:用的是什么策略?介绍一下。

  画示意图:

  请你跟大家介绍一下,你用的是什么策略,说说你是怎么想的?有没有要完善的地方(要求不要太高,学生只要能清楚表达出条件和问题就行)

  ⑶比较:比较这几种策略,哪一种整理的方法让人看得更清楚一些(列表、画示意图)列表整理信息是上学期学过的策略,今天我们将研究画示意图整理信息的策略,下面我们就一起来画一下。 ⑷教师示范画图。

  要先画长方形表示花坛原来的面积,长是8米,修建时长增加3米,这个花坛的面积增加18平方米,增加的'18平方米在什么地方?谁来指一指,怎样表示呢?

  8米3米

  ⑸你们能用这种画示意图的策略来整理题中的信息吗?拿出练习纸,画画看。

  ⑹要求花坛原来的面积,它是个什么图形?长方形的面积怎样计算?长知道吗?宽呢?(板书:宽)怎样求?18÷3为什么?求出了宽,下面的问题会解决了吗?在练习纸上做一做。

  ⑺交流反馈解题的情况。

  宽:18÷3=6(米)

  面积:8×6=48(平方米)

  ⑻刚才我们采用了什么策略解决这道题的,通过画示意图可以把题中的信息表示的更清楚,分析数量关系更直观,下面我们就用这样的策略继续解决问题。

  2、循序渐进,深入问题。

  出示题目2号长方形花坛种的是月季花,原来宽20米,后来因扩建道路,花坛的宽减少了5米,这样花坛的面积就减少了150平方米,现在的花坛是多少平方米?(在下图中画出减少的部分,再解答)⑴还有哪些信息示意图中没有表示出来呢?

  ⑵你们能把它画出来吗?跟老师的一比,看看你们画的对吗?为什么用虚线表示?

  ⑶根据画出的示意图,你认为要求出现在花坛的面积,先要求出什么?学生结合算式说说解题的思路。

  ⑷同样是用画示意图的策略分析问题,这题与第一题有什么不同之处呢?

  3、深入交流,展开问题。

  3号长方形花坛种的是兰花,如果这个花坛的长增加6米,或者宽增加4米,面积都比原来增加48平方米,你知道原来这个花坛的面积是多少平方米吗?(先在图上画一画,再解答)

  ⑴“长增加6米,或者宽增加4米”这里的或者是什么意思,你们能用今天学习的策略分析并解答吗,学生独立思考并完成。 ⑵四人为一小组把自己的想法在小组中交流一下。

  ⑶以小组为单位向全班汇报:展示自己所画的示意图,结合示意图说明自己的解题思路。

  4、自主探究,解决问题。

  下面还有一道题,要考考大家了。

  4号长方形花坛种的是蝴蝶花,长50米,宽40米。修建时,花坛的长增加了10米,宽增加了8米。花坛的面积增加了多少平方米?(先在图上画出增加的部分或在纸上列表,再解答)

  ⑴学生独立完成。

  ⑵交流:让学生先用列表的策略方式来解答。

  ⑶有不同的策略吗?

  先让学生从自己所画的示意图中指出增加的部分,再根据示意图说明自己的解题思路。

  ⑷通过这道题的解答,你又有什么想法呢?

  三、课堂总结

  通过这节课的学习,你有哪些收获?数学是思维的体操,今天我们学习的策略现在看来是最简便的。但是,随着你们知识的增长,将来一定会发现更多、更妙的解决问题的策略。

  四、课堂作业

  《补充习题》相应练习

  板书设计:

  解决面积问题的策略

  策略:画示意图

  寻找长方形的长和宽

《解决问题》教学设计11

  教学目标:

  1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.

  2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

  3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心.

  教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。

  教学难点:会用“转化”的策略解决问题。

  教学准备:电子课件、实物投影

  预习作业:

  预习课本第71-72页例1及练习十四的1-4题,在书上完成自己会做的题目。

  本节课是运用“转化”的策略来解决问题的,在以往的学习中,我们曾经就运用“转化”的策略解决过一些问题,

  教学过程

  预习效果检测分别出示两组图片

  出示第一组:你是怎样比较这两个图形面积的大小的?教师提问(1)第一个图形是怎样转化成长方形的?你是怎样想到把上面的半圆进行平移的?上面的半圆向什么方向平移了几格?(2)第二个图形是怎样转化成长方形的?你是怎样想到把左右两个半圆进行旋转的?左右两个半圆分别按什么方向旋转了多少度?

  (3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究

  学生得出:第一个图形:上面半圆向下平移5格。

  第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。

  教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。

  师:你知道你刚才比较时运用了什么策略吗?

  教师板书转化,将课题补全(用转化的策略解决问题)

  在以往的学习中,我们曾经就运用转化的'策略解决过一些问题,回忆一下。 同桌交流。学生充分列举,教师媒体配合演示并板书。

  这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)

  转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。

  空间与图形的领域

  1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?

  2、检查课本练一练,指名学生口答

  转化成什么图形可以使计算简便?怎样转化?

  3、检查练习十四第三题

  4、试一试:1/2+1/4+1/8+1/16

  这道题你是怎样求和的?小组交流。

  5、练一练4(课本练习十四1)

  每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。

  如果64个球队呢?100个呢?有更简单的计算方法吗?(师板书:产生冠军,就是要淘汰多少支队伍?)为什么16-1就是求的比赛的场数?

  三、当堂达标:完成补充习题对应的练习并交流反馈。

  四、故事启迪,领悟转化的技巧

  数学家爱迪生求灯泡的容积的故事(幻灯片)

  有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。

  爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。

  听了这个故事,你明白了什么道理?

  五、课堂总结:

  多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。

《解决问题》教学设计12

  学情分析:

  选择合适的长度单位,必须建立在长度估测的基础上。由于学生只认识了“厘米”和“米”,很容易作出非此即彼的简单推断。虽然旗杆、课桌、小鸟、篮球场等在生活中很常见,但学生并不一定都清楚它们的长度,也就是说我们应高估学生已有的生活经验。

  教学目标:

  1.结合具体事物,运用单位和数据相结合及借助参照物的方法,恰当选择长度单位。

  2.在解决问题的过程中,进一步建立米和厘米的长度观念。

  3.体会数学与生活的密切联系,培养学生学习数学的兴趣。

  教学重难点:

  重点:理解和掌握单位和数据相结合的判断方法。

  难点:学会借助参照物进行判断。

  教学准备:

  课件、橡皮、杯子、直尺等

  教学流程:

  复习导入→通过复习旧知,引入新知

  ↓ ↓

  探究新知→会运用长度单位解决问题

  ↓ ↓

  巩固应用→通过训练加深对知识的理解应用

  ↓ ↓

  课堂小结→总结学到的知识和方法

  复习导入:

  1.用手势比划出1厘米、5厘米、1米各有多长。

  2.播放课件:长颈鹿与小羊比本领的动画片。

  师:在长颈鹿和小羊比本领时,为什么长颈鹿赢了?

  生:因为长颈鹿长得高。

  师:长颈鹿到底有多高呢?是5厘米还是5米?由此引入新课。

  探究新知:

  1.想一想。

  课件出示高大的长颈鹿图片。

  师:你们在现实生活中见过长颈鹿吗?在哪里见过?

  生:在动物园里见过。

  师:联系实际想一想,你和长颈鹿相比,谁高?

  生:长颈鹿比我高。

  2.议一议。

  提出问题:长颈鹿高5厘米还是5米?

  学生小组合作,通过手势比划感知5厘米和5米有多长,并在组内交流自己的想法,教师巡视,注意发现有代表性的观点,为向全班汇报作准备。

  3.说一说。

  学生汇报自己的想法。

  生1:我大拇指的宽度大约1厘米,5厘米就是5个1厘米,也就是用大拇指的宽量5次的`长度,这跟我的中指的长度差不多,长颈鹿不可能那么矮,所以我觉得长颈鹿有5米高。

  生2:我尺子上从0到5的长度就是5厘米。

  这太短了,还没有长颈鹿的耳朵长,所以我觉得长颈鹿不可能是5厘米,只能是5米高。

  生3:我伸开双臂,两手之间的距离大约1米,还没有长颈鹿的脖子长,我觉得长颈鹿有好几个1米,应该是5米高。

  生4:我的身高1米多,还没有长颈鹿的脚高,所以长颈鹿应该是5米高,而不可能是5厘米高。

  生5:4个小朋友的身高加起来差不多和长颈鹿一样高,所以长颈鹿是5米高。

  巩固应用:

  1.教材第7页做一做。

  2.选择合适的长度,在括号里画“√”。

  (1)黑板长:①3厘米()②3米()

  (2)橡皮长:①2厘米()②2米()

  (3)大树高:①10厘米()②10米()

  学生自己辨别以上物体的长度,教师及时反馈。

  课堂小结:

  通过本节课的学习,你有什么收获?

  板书设计:

  解决问题

  测量较短的物体,一般用厘米作单位。

  测量较长(高)的物体,一般用米作单位。

  橡皮长2厘米长颈鹿高5米

  大树高10米

《解决问题》教学设计13

  教学内容:

  教学目标:

  1.让学生经历从具体的生活情境中发现、提出、解决数学问题的过程,学会用连乘两步计算解决问题,进一步理解乘法意义。

  2、通过解决具体问题,使学生学会根据相关问题选择恰当信息,进一步感悟用两步计算解决问题的一般策略和方法,体验问题解决策略的多样化,从而培养学生从多角度思考问题的意识。

  3、进一步发展学生综合运用数学知识解决问题的能力,并从中感受数学知识在日常生活中的应用价值。

  课前看视频:建国六十周年阅兵式(感受什么是方阵)

  课前谈话:今天我第一次来到你们学校上课,你们认识我吗?那你从哪些方面了解我呢?这些信息对了解我有帮助吗?

  一、教学流程:

  (一)、课上谈话,获取信息:今天老师带来了一些什么?(水笔),想作为奖品给上课表现好的同学们,你们想不想得到这些奖品啊?但是,想得到,可不是一件容易的事,你得表现要好。

  大屏幕显示得到奖品的途径:

  1、看要看仔细:仔细寻找数学信息。

  2、说要说清楚:上课大胆发言,说出你的想法;

  3、听要听明白:集中注意力倾听同学的发言;

  现在的问题是:购买这些水笔得花多少钱?要解决这个问题,你要获取哪些数学信息?

  预设信息:(贴纸)

  ①、每支水笔多少钱?(2元),

  ②、买了多少盒?(3盒)

  ③、每盒多少支?(10支)

  (二)、根据信息,解决问题

  A、你能帮我算一算,得花多少钱吗?

  B、独立完成,和小组交流你的想法;

  C、汇报,板书

  预设:方法一:2×10×3方法二3×10×2

  比较两种方法,先算什么,在算什么?和同桌再次交流方法,给今天的课题取名(连乘解决问题)

  总结方法的不同之处是因为思考的角度不同,得到的信息不同,先求的问题也就不同。

  (三)、收集信息,解决交流:

  解决:方阵中的数学问题。(多媒体)

  1、理解:方阵,行,列

  2、小组合作:操作学具,相互说出解决方法

  3、汇报、交流:解决思路

  4、小结

  (四)、实际运用,深化理解

  1、解决立方体中的数学问题:一共有多少个立方体组成的?

  2、提供多余条件的.数学问题:解决春游中的数学问题:每组8人,有4组,每组分发面包16只,矿泉水1瓶,垃圾袋1只,苹果3个,每瓶矿泉水2元,面包3元一只,请问老师要准备多少瓶矿泉水?

  3、提供隐含条件的数学问题:

  A、分水实验小学第二届数学手抄报“评比活动开始了,(链接:桐庐县分水实验小学网站教导处通知)要求是:三至五年级,每班上交3副,请问按要求,我们学校应上交多少副?(你还要获取哪些数学信息)

  B、解决上下班中的数学问题:徐老师家到学校约3千米,我一周上下班一共要行多少米?

  小结:解决问题还得看具体情况,如这里的班级数,具体到一所学校就有所区别,需要选择合理信息才能正确解答。

  (五)总结提升,把握关键

  谈话:今天这堂课我们主要研究什么数学问题,在分析解决问题时,关键要抓住什么?

  小结:寻找相关的数学信息,运用所学知识解决这些问题。

《解决问题》教学设计14

  一、教材分析

  学生在以前就已经接触过估算,初步了解了估算的必要性。并且能进行简单的估算,把一个数估算成整十整百或几百几十。这节内容是引导学生理解“大约”的意思,学会用除法估算的方法解决问题。更深入理解估算的意义。

  二、教学目标

  1、带领学生分析题目,理解题目意思。让学生学会自己分析题目,找关键字,列出正确的算式。

  2、使学生更进一步理解估算在实际问题中的意义,并能根据关键字进行估算,掌握除法估算的方法,用除法估算的方法简便快速的解决问题。

  3、培养学生解决问题的能力,能准确分析提取有用信息,理解需要解决的问题,找到解决的方法。规范学生的书写,养成良好的习惯。

  三、教学重、难点

  重点:学会除法估算的基本方法,能准确的进行估算。

  难点:能根据实际情况选择不同的方法进行估算,培养学生从多个角度思考问题的能力。

  四、教学过程

  (一)引入新课

  1、故事引入:最近天气真热呀!小红和爸爸妈妈决定出去旅游。(出示情景图)

  2、提出问题

  旅游结束宾馆的服务员告诉他们住了3天一共消费了267元,小红想知道他们每天的住宿费大约多少钱?你能帮帮她吗?

  3、解决问题

  (1)阅读理解题目

  知道了一共住了3天,也就是住的天数。还知道3天花了267元,也就是总的住宿费。要求每天(一天)的`住宿费大约是多少钱?

  找到关键字“大约”有“大概、差不多的意思”不需要求出准确值。

  (2)解决问题

  求每天(一天)的住宿费大约是多少钱?就是把总的住宿费平均分成3份。不用算出准确的钱数。也就是要进行估算。(估算要写约等号)

  列除法算式:每天的住宿费=总钱数÷住的天数。

  267÷3≈

  (3)学生尝试计算

  (4)判断分析

  两种结果都合理吗?

  因为不需要算出准确的钱数,两种方法都用估算的方法,很快求出了结果,而且算法很简单;虽然他们的结果不一样,但与准确值差距都不大。所以都合理。

  第二种往大估成270更接近267,算得约等于90更接近准确值,更合理一些。

  (二)小结

  一般把被除数看成整百(整十)或几百几十的数,除数不变,用口算除法的基本方法进行计算。而个别的是需要结合乘法口诀进行估算的。

  (三)巩固练习

  请学生说一说每天的住宿费比90元多还是比90元少?为什么?

  比90元少,因为每天90元3天要270元,而实际的住宿费是267元比270少,所以比90元少。

  每天的住宿费比80元多还是比80元少?为什么?

  比80元多,因为每天80元3天要240元,而实际住宿费是267元比240元多,所以比80元多。

  五、板书设计

  每天的住宿费=总钱数÷住的天数

  列式为:267÷3≈

  第一种:把267看成300,267÷3 ≈ 100元 每天的住宿费大约是100元。

  第二种:把267看成270,267÷3 ≈ 90元 每天的住宿费大约是90元。

  六、作业设计

  1、面包房烤了236个面包。

  (1)如果每3个面包装一袋,大约可以装多少袋?

  (2)如果每4个面包装一袋,大约可以装多少袋?

  2、洋葱课堂的随堂小测

  七、教学反思

  应该从学生的生活经验和生活背景出发,联系生活讲数学。把数学问题生活化。估算不能只出现在估算课上,要把它贯穿到整个教学过程中,培养学生估算能力和解决问题能力。

《解决问题》教学设计15

  一、学习目标

  知识与技能:.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。

  过程与方法:在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。

  情感、态度与价值观:通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。

  二、复习旧知

  王老师步行到学校,每小时走4.5千米,0.6小时到学校。王老师家离学校有多少千米?如果王老师改骑自行车去学校,他骑自行车的速度是14.6千米每小时,他0.2小时能到学校吗?

  三、自学探究

  1、读一读,思考:

  (1)题目中知道了:

  (2)“3千米以内7元”的意思是:

  (3)“不足1千米按1千米计算”的意思是:

  2、自主尝试

  (1)问题中的收费标准是分两段计费的,3km以内是一个收费标准,为一段;超过3km又是一个收费标准,又为一段。

  (2)超过3km部分,不足1km要按1km计算,也就是要用“进一法”取整千米数。

  3、思考:根据提示自主解答?

  (1)、3千米以内的部分应付:

  (2)、超过3千米的部分应付:

  (3)、总的应付:

  4、列式计算

  四、巩固测评

  1、练习四第6题。

  某市自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费。12吨以内的每吨2.5元,超过12吨的.部分,每吨3.8元。

  (1)小云家上个月的用水量为11吨,应缴水费多少元?

  (2)小可家上个月的用水量为17吨,应缴水费多少元?

  2、练习四第7题。

  3、练习四第8题

  某地打固定电话每次前3分钟内收费0.22元,超过3分钟每分钟收费0.11元(不足1分钟按1分钟计算)。妈妈一次通话时间是8分29秒,她这一次通话的费用是多少?

  五、学习收获

  通过探究学习,我的收获是

【《解决问题》教学设计】相关文章:

数学解决问题教学设计01-17

《解决问题策略》教学设计05-12

五年级人教版解决问题教学设计03-07

三年级解决问题教学设计05-10

三年级《解决问题》教学设计05-09

《解决问题》教学反思04-07

解决问题的策略教学反思01-03

数学二年级下册《解决问题》教学设计05-07

二年级数学下册《解决问题》教学设计06-03

《用除法解决问题》教学反思11-12