一元一次不等式教学设计

时间:2023-10-15 08:24:59 教学资源 投诉 投稿

【推荐】一元一次不等式教学设计7篇

  作为一位不辞辛劳的人民教师,时常需要准备好教学设计,借助教学设计可以提高教学效率和教学质量。我们该怎么去写教学设计呢?以下是小编帮大家整理的一元一次不等式教学设计,希望能够帮助到大家。

【推荐】一元一次不等式教学设计7篇

一元一次不等式教学设计1

  (一)教学目标

  1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。

  2。过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系;

  3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。

  (二)教学重、难点

  重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

  难点:用不等式(组)正确表示出不等关系。

  (三)教学设想

  [创设问题情境]

  问题1:设点A与平面的距离为d,B为平面上的任意一点,则d≤。

  问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?

  分析:若杂志的定价为x元,则销售的总收入为万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20

  问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?

  分析:假设截得500mm的钢管x根,截得600mm的钢管y根。。

  根据题意,应有如下的.不等关系:

  (1)解得两种钢管的总长度不能超过4000mm;

  (2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;

  (3)解得两钟钢管的数量都不能为负。

  由以上不等关系,可得不等式组:

  [练习]第82页,第1.2题。

  [知识拓展]

  设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否也有类似的性质呢?

  从实数的基本性质出发,可以证明下列常用的不等式的基本性质:

  证明:

  例1讲解(第82页)

  [练习]第82页,第3题。

  [思考]:利用以上基本性质,证明不等式的下列性质:

  [小结]:1。现实世界和日常生活中存在着大量的不等关系;

  2。利用不等式的有关基本性质研究不等关系;

  [作业]:习题3.1(第83页):(A组)4.5;(B组)2。

一元一次不等式教学设计2

  1、教学资源分析

  采用多媒体课件,导学案进行教学。

  2、教学内容分析

  在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。

  解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x

  ●重点

  一元一次不等式的解法。

  ●难点

  不等式性质3在解不等式中的运用是难点

  3、教学目标分析

  ●目标

  1。使学生了解一元一次不等式的概念;

  2。使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。

  3。经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。

  ●目标解析

  达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。

  达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x

  达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。

  4、学习者特征分析

  本节课是在学生了解不等式的'解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。

  5、教学过程设计

  <一>、问题导入,探索新知1

  问题1:举出一元一次方程的例子?

  【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。

  问题2:

  将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?

  通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

  【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。

  问题3:学生举一元一次不等式的例子,学生判断。

  师:判断下列各式是否是一元一次不等式?

  ①②③④⑤

  ⑥

  【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。

  <二>、探索新知2

  通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x

  【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x

  师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题

  (1)解方程解不等式

  2(1+x)=3(1)2(1+x)<3>

  2x—3x<—2+2

  —x<0>

  教科书习题9.2第1,2,3,题

  <五>目标检测

  解一元一次不等式?,并把它的解集在数轴上表示出来.

  6、教学评价的设计

  本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。

一元一次不等式教学设计3

  【教学目标】:

  1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。

  2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型

  3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习

  惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

  【重点难点】:

  重点:一元一次不等式在实际问题中的应用。难点:在实际问题中建立一元一次不等式的数量关系。

  关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的

  不等量关系,列代数式得到不等式,转化为纯数学问题求解。

  【教学过程】:创设情境,研究新知

  这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

  问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?

  (从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作

  选定了旅行社以后,我们要去购物了,正好商店为了吸引顾客在举行优惠打折活动

  问题2:

  甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的'起点为购物款过___元后。启发提问:我们是否应分情况考虑?可以怎样分情况呢?

  (1)如果累计购物不超过50元,则在两店购物花费有区别吗?

  (2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?

  关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

  小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题从关键语句中找条件

  符号表达

  1、根据设置恰当的未知数

  2、用代数式表示各过程量

  3、寻找问题中的不等关系列出不等式

  解不等式注意不等式基本性质的运用

  (本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。)预留悬念要出游旅行,目的地的天气情况也是我们很关注的问题,下节课我们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。

  (抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫)

  教学设计:

  一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。

  本节课的教学设计从以下几个方面进行设置:

  1、教学内容:

  本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。

  2、组织形式:

  本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。

  3、学习方式:

  动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。

  4、 评价方式:

  教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。

一元一次不等式教学设计4

  教材分析

  本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。

  课程目标分析

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

  2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

  3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  教学重、难点分析

  重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。

  难点:

  1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

  2、利用基本不等式求解实际问题中的最大值和最小值。

  教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

  教学准备

  多媒体课件、板书

  教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  创设情景,提出问题;

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问]你能在这个图中找出一些相等关系或不等关系吗?

  本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。

  二、抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问]你能给出它的证明吗?

  学生在黑板上板书。

  特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?

  设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的.来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。

  答案:。

  【归纳总结】

  如果a,b都是正数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  三、理解升华:

  1、文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2、联想数列的知识理解基本不等式

  已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

  两个正数的等差中项不小于它们正的等比中项。

  3、符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

一元一次不等式教学设计5

  教学目标

  1、知识与技能

  理解一次函数与一元一次不等式的关系,发展学生的认知体系。

  2、过程与方法

  经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法。

  3、情感、态度与价值观

  培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值。

  重、难点与关键

  1、重点:一次函数与一元一次不等式的关系。

  2、难点:如何应用一次函数性质解决一元一次不等式的解集问题。

  3、关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围。

  教具准备

  采用“问题解决”的教学方法。

  教学过程

  一、回顾交流,知识迁移

  问题提出:请思考下面两个问题:

  (1)解不等式5x+6>3x+10;

  (2)当自变量x为何值时,函数y=2x—4的值大于0?

  学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题。

  教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

  思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x—4>0,解这个不等式得x>2;问题(2)就是解不等式2x—4>0,得出x>2时函数y=2x—4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x—4(如图)可以看出。当x>2时,这条直线上的点在x轴的上方,即这时y=2x—4>0。

  问题探索

  教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

  学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题。

  师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的`形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围。

  教学形式师生互动交流,生生互动。

  二、范例点击,领悟新知

  例2用画函数图象的方法解不等式5x+4<2x+10。

  教师活动激发思考

  学生活动小组合作讨论,运用两种思维方法解决例2问题

  解法1:原不等式化为3x—6<0,画出直线y=3x—6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x—6<0,所以不等式的解集为x<2。

  解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2。

  评析两种解法都把解不等式转化为比较直线上点的位置的高低。

  三、随堂练习,巩固深化

  课本P216练习。

  四、课堂,发展潜能

  用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的。

  五、布置作业,专题突破

  课本P129习题14·3第3,4,7,8,10题。

一元一次不等式教学设计6

  教学目标:

  了解一元一次不等式的概念,掌握一元一次不等式的解法。

  教学重点

  是掌握解一元一次不等式的步骤.

  教学难点

  是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。

  教学过程:一、问题导入

  复习:1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。

  2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?

  3、解一元一次方程:6x+ 5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。

  二、指导自学,小组合作交流

  请同学们根据以下提问进行自学,先个人思考,后小组合作学习。

  1、观察下列不等式,说一说这些不等式有哪些共同特点?

  (1)2x+5 ≥8(2)x+1≤—4(3)x<2(4)6—3x>4 3(x+1)≤0

  观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。

  2、让学生举出2或3个一元一次不等式的例子,小组交流。

  3、让学生通过比较解一元一次方程:6x+ 5=7-2x的解法试解一元一次不等式:6x+ 5<7-2x,并将解集在数轴上表示出来。

  4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

  5、解下列不等式,并把它们的解集在数轴上表示出来。

  (1)3-x<2x +9(2)2-4(x-1)> 3(x+2)-x

  (3)(x-1)/ 3≥(2-x)/2+1

  总结:解一元一次不等式的依据和解一元一次不等式的步骤。

  三、互动交流,教师点拨

  (一)、学生易出错的问题和注意的事项:

  1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

  2、对于(1),让学生说明不等式3-x<2x + 9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的'移项一样。即移项要变号(培养学生运用类比的数学思想)。

  3、不等式两边同时除以(-3)时,不等号的方向改变。

  2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。

  (2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。

  3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)

  四、巩固练习

  1、判断下列不等式是不是一元一次不等式,为什么?

  (1)2/x—3<5x+3(2)5x+3<0 2="">x–1(4)x(2x+1)

  (设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

  5、问题3:如何求得这两个解集的公共部分?

  学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

  (设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

  教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

  (设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的'观察能力和数形结合的思想方法。)

  形式一:用两种不同颜色表示这两个解集

  1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

  (1)这两种颜色把数轴分成几个部分?

  (2)每一个部分分别表示哪些数?

  (3)请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

  2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

  3)得出结论:

  只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

  4)教师提问:两个不等式解集的界点:即实数40.50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

  (设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

  形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

  类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

  形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

  (设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

  6、问题4:如何表示这个可取值范围?

  教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

  7、小结并解决课本问题:原不等式组中x的取值范围为40

  (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

  8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

  在数轴上,若在40

  一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

  9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

  (1)分别求出不等式组中各个不等式的解集;

  (2)把这些解集分别在同一条数轴上表示出来;

  (3)确定各个不等式解集的公共部分;

  (4)写出不等式组的解集。

  (设计意图:及时进行小结,使学生对所学知识更加的系统化。)

【一元一次不等式教学设计】相关文章:

一元一次不等式教学设计03-21

一元一次不等式组教学设计03-23

一元一次不等式教学设计15篇03-21

一元一次不等式教学设计14篇04-08

一元一次不等式组教学设计3篇03-23

一元一次不等式组教学反思04-22

一元一次不等式教学反思(精选22篇)01-17

一元一次不等式教案02-23

《一次函数与一元一次不等式》教学反思02-03

一元一次不等式组课后教学反思(精选5篇)04-01