分式方程教学设计

时间:2023-11-30 08:45:54 教学资源 投诉 投稿
  • 《分式方程》教学设计 推荐度:
  • 相关推荐

分式方程教学设计

  作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么什么样的教学设计才是好的呢?以下是小编整理的分式方程教学设计,希望能够帮助到大家。

分式方程教学设计

分式方程教学设计1

  一、教学内容分析:

  本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

  二、学情分析:

  在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。

  三、教学目标:

  1、明确什么是分式方程?会区分整式方程与分式方程。

  2、会解可化为一元一次方程的分式方程。

  3、知道分式方程产生增根的原因,并学会如何验根。

  四、教学重点:

  分式方程的解法。

  教学难点:理解分式方程可能产生增根的原因。

  五、教学流程

  1、忆一忆

  (1)什么叫方程?什么叫方程的解?

  (2)什么叫分式?

  (3)结合具体例子说出解一元一次方程的'步骤。

  设计意图:

  让学生由旧知识的回忆自然引出新知识便于学生理解接受。

  2x-(x-1)/3=6 3x/4+(2x+1)/3=0

  2、猜一猜

  板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。

  设计意图:

  采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。

  3、辨一辨

  判断下列方程是不是分式方程,并说出为什么?

  1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2

  2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1

  指出:

  分式方程与整式方程的区别(分母中含不含未知数)

  设计意图:

  学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。 (x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。

  4、想一想

  提出该如何解方程呢?让学生讨论后得出:

  通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。

  设计意图:

  让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。

  5、试一试

  (1)80/(x+5) (2)1/(x-5)=10/x.x-25

  方程两边同乘以 x(x+5)得: 方程两边同乘以(x+5)(x-5)得:

  80x=60(x+5) x+5=10

  80x=60x+300 x=5

  20x=300

  x=15

  提醒学生检验,对比两个方程发现问题。

  设计意图:

  通过提醒学生检验,让学生自己发现问题。从而自然引出话题。

  6、议一议

  分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

  7、说一说

  老师帮忙总结出解分式方程的一般步骤:

  1、程两边都乘最简公分母,约去分母,化为整式方程。

  2、解这个整式方程。

  3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

  可简单记作:

  一化二解三检验。

  设计意图:

  让学生对所学知识上升到一个理论高度。

  8、做一做

  解方程:

  (1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)

  体验解分式方程的完整过程。

分式方程教学设计2

  1教学目标

  1.了解分式方程的概念, 和产生增根的原因.

  2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.

  2学情分析

  3重点难点

  1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.

  2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.

  3.认知难点与突破方法

  4教学过程

  4.1第一学时评论(0) 新设计

  一、解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法.

  二、要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边同乘最简公分母.

  要让学生掌握解分式方程的一般步骤:

  三、例、习题的意图分析

  1.思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.

  2.归纳明确地总结了解分式方程的基本思路和做法.

  3.思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及归纳出检验增根的方法.

  4.讨论提出归纳出检验增根的方法的理论根据是什么?

  5. 教材习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.

  四、课堂引入

  1.回忆一元一次方程的解法,并且解方程

  2.提出本章引言的问题:

  一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程.

  像这样分母中含未知数的方程叫做分式方程.

  五、例题讲解

  例1.解方程

  [分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化

  为整式方程,整式方程的解必须验根.

  这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.

  例2.解方程

  [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.

  六、随堂练习

  (1)x=18(2)原方程无解(3)x=1(4)x=

  七、课后练习

  (1) x=3 (2) x=3(3)原方程无解(4)x=1 2. x=

  八、答案:

  x为何值时,代数式的值等于2?

  九.教学反思

  1、反思学情

  学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理。容易开发他们的主观能动性。但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根。

  2、反思学法

  “授人以鱼,不如授人以渔”。本节课里我主要指导学生采用了自主探索、合作交流、自我反思的抽签讲课式学习方法,使学生积极主动地参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥。

  3、反思教法

  常言道:教必有法,教无定法。 数学课程标准指出:学生的'数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式。本着这一理念,我放手让学生大胆尝试,抽签讲课。在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力。在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识,而且注重学生对待学习的态度是否积极。

  本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课充分利用“导学案”、采用了启发式、引导式教学方法。特别注重"精讲多练 ",真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣。使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程。

分式方程教学设计3

  一、教材分析

  本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。分式方程概念的学习,为分式方程的解法及运用的学习做了极为必要的铺垫。

  二、教学目标及重点、难点

  三维教学目标:

  1.知识目标:从实际情境中抽象出分式方程的概念;

  2.能力目标:通过列分式方程培养学生分析问题、解决问题的能力;

  3.情感目标:培养学生的'社会责任感及应用数学的意识。

  教学重点:列分式方程

  教学难点:列分式方程。

  三、教育理念及教法依据:

  采用建构主义教学模式,运用成功教育及赏识教育理念设计教学。

  四、教学程序

  1.情境

  (出示)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

  设计发问:(1)你能用自己的语言解释每一个数据的意义吗?

  (2)你能尽可能从题目中找到等量关系吗?

  答:①两块地的面积相等;

  ②第一块地的产量为9000kg;

  ③第二块地的产量为15000kg;

  ④第一块地的单位面积产量比第二块少3000kg;

  (3)你还能找到哪些隐含的数量关系?

  答:⑤总产量/总面积=单位面积产量

  (4)如何选设未知数?(通常设直接未知数,如建立方程困难则选设间接未知数)

  (5)哪些关系可以用来建立代数式?哪一个关系用来建立方程?

  (6)如何建立方程?

  解:设第一块试验田每公顷产量为xkg,则第二块试验田每公顷的产量是(x+300)kg.由题意得9000/x=15000/(x+3000).

  (教师板书等量关系及所列方程)

  设计意图:(1)以问题串的形式形成师生之间的对话,推进学生的思维,突破学习的难点;

  (2)呈现列方程的通用方法:分析数据——找等量关系——设未知数——建立相关的代数式——建立方程;

  (3)如果学生的回答思维跳跃较大,教师采取追问的方式,将思维的关键步骤凸显出来,使基础薄弱的学生也能积极地跟进;

  (4)提醒学生:

  ①通常设一个未知数至少需要建立一个方程,设两个未知数至少需要建立两个方程;

  ②等量关系或用来列代数式或用来建立方程,不能重复使用;

  ③学会用代数式思考问题;

  ④列方程的思想要“深入人心”。

  2.情境

  (出示)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480 km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

  组织教学:分成男生、女生两个阵营,就以上问题,一方同学依次发问,另一方依次应答。提问方围绕问题,想问什么就问什么,问清楚问透彻;应答方有问必答。

  如,女生问:(1)请解释题中数据的意义?

  (2)题中有哪些数量关系?

  男生答:路程:普通公路全长600km,高速公路全长480km;

  速度关系:客车在高速公路上的速度比在普通公路上快45km/h;

  时间关系:走高速所用时间是走普通公路用时的一半。

  行程问题中三个量之间的基本关系:速度×时间=路程路程/速度=时间路程/时间=速度

  女生问:如何设未知数?如何建立代数式?如何建立方程?

  男生答:解:设客车由高速公路从甲地到乙地需要xh,则由普通公路从甲地到乙地需要2xh,根据题意,得600/x-480/2x=45.

  女生追问:哪些数量关系被用来列代数式?哪些关系被用来建立方程?

  男生答(略)

  设计意图:(1)变“师生问答”为“男生、女生的问答”,将问题的分析解决变成一个双方斗智的游戏,一个模拟的思维游戏,易激发学生的学习兴趣;

  (2)在问答中不同阵营的学生可以追加发问,可以补充回答,通过问题的解决既培养斗智斗勇的竞争意识,又培养团队合作精神;

  (3)教师要做一个好的观察者,适当指导,保证学生思维是活跃的,思维方向是正确的;

  (4)同时注意控制教学时间。

  3.情境3.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。求两次捐款人数各是多少。

  组织教学:双方阵营互换角色

  解:设第一次捐款人数为x人,则第二次捐款人数为(x+20)人,由题意,得4800/x=5000/(x+20).

  4.形成概念

  问(1)以上所列的方程有什么共同特点?

  学生归纳形成概念:分母中含有未知数的方程叫做分式方程。

  问(2)“分式方程”与“分式”有何不同?“分式方程”与“整式方程”有何不同?

  (3)判断:下列关于x的方程,是分式方程的是?

  a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.

  设计意图:通过新旧概念的比较明确新概念,通过判断强化新概念。

  5.(人人过关)

  练习1.据联合国《20xx年世界投资报告》指出,中国20xx年吸收外国投资额达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为x亿美元,请你写出x满足的方程。你能写出几个方程?其中哪一个是分式方程?

  教学设计:

  (1)突破难点:百分数13%是“比谁增加了13%”?

  (2)每位学生至少列出三个方程;

  (3)学生独立解题,教师板书学生的答案,供大家彼此借鉴,互相学习。

  练习2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,6h完成了一半任务,后来机械装运和人工装运同时进行,1h完成了后一半任务。如果设单独采用机械装运xh可以完成后一半任务,那么x满足怎样的方程?

  教学设计:

  (1)本题是工程问题的情境;

  (2)学生独立完成,互相交流答案,教师点评。

  6.课堂小结:

  (1)本节课你有什么收获?还有什么疑问吗?(小组交流,派代表发言)

  (2)在双方问答的对决中,哪个阵营思维更活跃,更具合作意识,请表决,并为胜方热烈鼓掌。

分式方程教学设计4

  教学目标

  (一)知识与技能

  理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

  (二)过程与方法

  通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的“转化”思想。

  (三)情感、态度与价值观

  培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

  教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

  教学难点:探索分式方程产生增根的原因。

  教学过程

  一、创设情境,导入新课:

  为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为2000元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

  根据以上信息你能分别求出两次捐款的人数吗?

  若设第一次捐款人数为X人,第二次捐款人数为( )人。

  根据相等关系列方程为( )。

  这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

  二、新课学习:

  (一)分式方程的定义:

  分母中含有未知数的方程叫做分式方程

  以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

  反馈练习

  (二)探索分式方程的解法

  1、回顾整式方程的解法

  解方程(解上面练习中的'第三题)

  师生共同回顾:解整式方程的步骤

  (1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)化未知x的系数为1

  2、如何解分式方程呢?

  (学生尝试完成,然后集体补充步骤)

  解方程:20xx∕X=2150/X+15

  解:方程两边同时乘以X(X+15),得

  20xx(X+15)=2150X

  解这个整式方程,得

  x=200

  则200+15=215

  检验:把x=200代入原方程,因为左边=10右边=10

  所以左边=右边

  所以x=200是原方程的解。

  3、归纳解分式方程的步骤

  一是去分母,二是解整式方程,三是检验

  4、例题解方程:

  (学生独立完成,老师指导)

  分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根。

  师:解分式方程必须进行检验!

  [师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

  [生]最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。

  三、应用升华

  四、小结

  本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

  五、布置作业:

  本小节课时作业

  教学反思

  1、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

  2、对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教学设计5

  一、教学内容分析:本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

  二、学情分析:在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。

  三、教学目标:1、明确什么是分式方程?会区分整式方程与分式方程。

  2、会解可化为一元一次方程的分式方程。

  3、知道分式方程产生增根的原因,并学会如何验根。

  四、教学重点:分式方程的解法。

  教学难点:理解分式方程可能产生增根的原因。

  五、教学流程

  1、忆一忆

  (1)什么叫方程?什么叫方程的解?

  (2)什么叫分式?

  (3)结合具体例子说出解一元一次方程的步骤。

  设计意图:让学生由旧知识的回忆自然引出新知识便于学生理解接受。

  2x-(x-1)/3=6 3x/4+(2x+1)/3=0

  2、猜一猜

  板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。

  设计意图:采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。

  3、辨一辨

  判断下列方程是不是分式方程,并说出为什么?

  1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2

  2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1

  指出:分式方程与整式方程的区别(分母中含不含未知数)

  设计意图:学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。 (x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的.意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。

  4、想一想

  提出该如何解方程呢?让学生讨论后得出:

  通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。

  设计意图:让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。

  5、试一试

  (1)80/(x+5) (2)1/(x-5)=10/x.x-25

  方程两边同乘以 x(x+5)得: 方程两边同乘以(x+5)(x-5)得:

  80x=60(x+5) x+5=10

  80x=60x+300 x=5

  20x=300

  x=15

  提醒学生检验,对比两个方程发现问题。

  设计意图:通过提醒学生检验,让学生自己发现问题。从而自然引出话题。

  6、议一议

  分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

  7、说一说

  老师帮忙总结出解分式方程的一般步骤:

  1、程两边都乘最简公分母,约去分母,化为整式方程。

  2、解这个整式方程。

  3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

  可简单记作:一化二解三检验。

  设计意图:让学生对所学知识上升到一个理论高度。

  8、做一做

  解方程: (1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)

  体验解分式方程的完整过程。

分式方程教学设计6

  教材分析

  本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

  学情分析

  《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

  我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的`学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

  教学目标

  知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

  过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

  情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

  教学重点和难点

  教学重点:解分式方程的基本思路和解法。

  教学难点:理解分式方程可能产生增根的原因。

【分式方程教学设计】相关文章:

《分式方程》的教学反思05-30

最新分式方程教学反思范文(精选12篇)07-22

《解分式方程》教案03-13

欣赏与设计教学设计05-24

《头饰设计》教学设计06-06

经典教学设计03-05

(精选)教学设计08-18

教学设计04-19

数学教学教学设计04-15