【优选】《循环小数》教学设计15篇
作为一位兢兢业业的人民教师,通常需要用到教学设计来辅助教学,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编帮大家整理的《循环小数》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《循环小数》教学设计1
教材分析
循环小数是个新知识。这部分概念较多,又比较抽象,是教学的一个难点。教材通过例8,先让学生做除法。通过实际计算,发现这些除法无论除到小数点后面多少位,都除不尽。然后,教材中提出问题,让学生观察它们的商有什么特点,并想一想这是为什么。根据学生计算出的除法竖式,引导学生发现商和余数的关系。由于余数重复出现,商也重复出现,而且这样的重复是循环不断的。从而,引出循环小数的概念。接着,教材通过两个数相除时商的两种情况,介绍有限小数和无限小数的概念。以前学生对小数概念的认识仅限于有限小数。到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。最后,介绍循环节、纯循环小数和混循环小数等概念,这些都是选学内容。介绍循环小数的简便记法,说明当两个数相除不能除尽时,可以用循环小数表示商,小数的循环部分可以只写出第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。
学情分析
我们班的'学生思维活跃,上课时还能够专心听讲,积极主动发言,善于提问。学生在生活中已感受过循环、重复的现象,也经历过将事物进行分类、整理的活动,具备了初步的比较、分类、归纳、概括等能力,为今天的学习打下了良好的基础。循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。以前学生对小数概念的认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。
教学目标
知识技能目标:初步理解循环小数、有限小数、无限小数的意义,能正确地区分有限小数和无限小数,了解循环节的概念和循环小数的简便记法。
思维发展目标:经历循环小数的认识过程,体验探究发现的学习,培养发现问题、提出问题、解决问题的能力,提高观察、分析、比较、判断、抽象概括能力。
情感态度目标:感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心,初步渗透集合思想。
教学重点和难点
教学重点:通过笔算,发现循环小数的规律,掌握循环小数的意义。
教学难点:能正确判断循环节数字,用简便记法表示循环小数。
《循环小数》教学设计2
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学重点:
掌握循环小数、无限小数、有限小数的意义。
教学难点:
掌握循环小数的简便记法。
教学过程:
一、设疑自探
1、设疑引课。
今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:这个故事讲得完吗为什么讲不完呢(板书:重复出现)
今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么
全班齐笔算王鹏平均每秒跑了多少米(指名一生板演)。
2、初步感受循环小数的特点。
有些同学算着算着就停下了,发现了什么问题吗(组织学生小组内交流)
可能发现:
1、余数总是“25”。
2、继续除下去,永远也除不完。
3、商的小数部分总是重复出现“3”。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢你为什么使用省略号省略号在这里表示什么意思(师板书)
3、总结概括循环小数的意义。
其他除法算式会不会出现这种情况呢请同学们算一算:28÷÷11
先计算,再说一说这些商的特点。如果继续除下去,商会怎样能除尽吗(请生板演计算结果)
观察例
8、例9的三道题,你们发现他们的异同吗(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:
学生讨论后,指名汇报,教师抓住学生回答板书:
(1)小数部分,位数无限(或者除不尽)。
(2)有的是一个数字不断重复出现,有的是两个。教师小结循环数的意义,(板书课题)。
二、质疑探究
(一)检查自学情况(学困生回答,中等生补充,优等生评价)
巩固练习:下列哪些是循环小数并说一说理由。
52、3、3、
学生评议。
三、质疑再探
(一)学生质疑
教师:针对本节课学习的知识,你还有什么疑惑请提出来,大家一起研究。也可以提出由本节所学知识联想到的问题。
(二)解决学生提出的问题
(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
除了用省略号来表示循环小数外,还可以用简便记法来表示。如还可以写作,7、还可以写作,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52、可能出现问题、52,师生共同辨析)
看书P27—28第一自然段,及了解“你知道吗”
理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况请举例说明
学生小组讨论,汇报。
师两个数相除,如果不能得到整数商会有两种情况:
1、商的小数部分位数是有限的.,叫做有限小数;
2、商的小数部分位数是无限的,叫做无限小数。判断前面练习题中的小数哪些是有限小数哪些是无限小数。
循环小数是有限小数,还是无限小数为什么
学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。
四、运用拓展
(一)学生自编习题
1、让学生根据本节所学知识,用适当题型编写1~2道练习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
用计算器算出商后,说出商是什么小数,依据是什么是循环小数的要求用简便方法写出来。
19÷÷÷
(三)全课总结
1、学生谈学习收获
教师:通过本节课的学习,你有什么收获请说出来与大家共同分享。
2、学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
课后反思:
练习中出现了以下几种常见错误:
1、在竖式中在第一个循环节上也打了循环节的圆点。
2、在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。
3、在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2.01212学生除到2.0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。
《循环小数》教学设计3
教学目标:
①知识技能:通过学习与探究小数的循环现象,探索循环小数的循环规律。初步认识循环小数,知道循环小数的位数是无限的;
②过程与方法:经历讨论、交流的学习活动,培养学生的分类能力、分析能力和概括能力。
③情感与态度:体会数学来源于生活、服务于生活的思想,培养学生分析、处理问题的能力。
教学重难点:
理解和掌握循环小数等概念,这些概念应通过学生试算、观察、讨论、归纳得出。
教学过程:
(一)创设情境,感知概念。
1.拍节奏游戏:
师:(1)老师拍节奏,你们能拍出来吗?
(2)你们拍的节奏为什么这么整齐?
(3)如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,想一想,你们要拍多少次?
(4)像这样拍的次数是“有限的”还是“无限的”?
(5)你们刚才拍的次数呢?
2.找规律,猜图形。
多媒体出示:依次出现两个圆圈和一个三角形的图形。
当逐个出现至第十个图形,即第四组的第一个圆圈后,提问:
谁能猜到下面一个是什么图形呢?
你是怎样想出来呢?
出示第12个图形时,当学生猜出下面一个是三角形时,出现“......”这个省略号表示什么意思?
对的,也就是说,是依次不断地重复出现这样的`图形,请同学们想一想,这幅图中有多少组这样的图形呢?
学生说完后,教师板书(依次不断地重复出现,无限)
在实际生活中,还有那些现象是这样的?
一年有春夏秋冬,四季周而复始,每个星期有七天,每年有52个星期,开着的红绿灯,这些都是循环现象,其实,在数学王国里,就有一种小数,同学们想认识它吗?(想)这节课我们就来学习“循环小数”。板书课题,导入新课。
(二)展示过程 探究新知
1、循环小数
①组织学生自由选择下面各题,用竖式计算,并引导学生观察商的特点。
330÷1100 2÷6 1.23÷3
②自学例2 7.3 ÷2.2 除到商是五位小数时停止。
自学提示:(1)想一想,如果继续除下去,商会怎样?
(2)谁来猜一猜第6位小数是几?
(3)“等等”用什么符号来表示?能不能不用省略号?为什么?
③你能说说省略号表示什么?
2÷9=0.222…… 5÷12=0.4166……
9÷55=0.16363…… 2.4666…… 2.583583……
④你们还能举出这样的小数吗?
⑤概括并揭题。
像这些小数,就是我们今天要学习的“循环小数”。(板书课题)
谁来说一说什么叫“循环小数”?你们认为这句话里哪几个字比较重要?
⑥判断,请同学们判断哪几个数是循环小数,为什么?
0.999…… 5.02727…… 6.416416……
3.5656565656 3.1415926…… 0.123321……
2、循环节
“0.333……”中不断重复出现的数字是哪一个?在3.31818……数中,依次不断地重复出现的数字有个名称,请看书上第61页,什么叫循环节?请找出以上判断题中循环小数的循环节。
3、循环小数的简便记法
①记法和读法。
记法:把循环节写出两遍或三遍,是一种记法。简便记法:只写一个循环节,然后在循环节的首位和末尾数字上各记一个圆点,这个点叫循环节。
读法:5.327…… 五点三二七,二七循环。
② 练习。
(1)写出3.333……的简便写法。
(2)写出判断题中循环小数的简便写法。
(三)巩固强化,拓展思维。
1、判断题.
(1)9.6666是循环小数。 ( )
(2)循环小数是无限小数。( )
(3)循环小数57.575575……记作57.57 ( )
(4)32.3232是有限小数也是循环小数。 ( )
2、把下面的循环小数圈起来。
4.3737 5.28383…… 5.314162…… 0.7563563……
3.小结:
如果用这是个什么样的循环小数?
循环节是什么?可以简写成什么?学生板演.
(四)课堂总结,鼓励质疑。
通过这堂课的学习,你们有那些收获?还有那些疑问?
《循环小数》教学设计4
一、教学内容:
教材第64页例。
“试一试”和“练一练”,完成练习十二第1-3题。
二、教学目标:
1、 使学生理解小数乘小数的意义,掌握小数乘小数的计算法则。
2、 能正确运用计算法则计算小数乘小数的乘法。
3、 培养学生的合作能力和迁移类推能力。
三、教学过程:
(一)预习案
1.复习。
0.52+0.48= 0.17+0.33= 3.6+6.4= 0.8×3= 3.7×5= 46×0.3=
2.回忆整数乘法的法则。
(二)导学案
1.教学例1。
(1)出示例1。
(2)提问:房间的面积有多大?先估计一下。 3.6×2.8≈( )
想:3×3=9,面积在9平方米左右。 4×3=12,面积在12平方米左右。
(3)提出:列竖式计算怎样算呢? 把这两个小数都看成整数,很快计结果。 相乘后怎样才能得到原来的积?
(4)学生讨论。
得出:两个因数分别乘十,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的.积是10.08。
2.试一试。
(1)提出:要求阳台的面积是多少平方米?怎样列式?2.8×1.15=( )
(2)计算2.8×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?
(3)得出:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.22。
3.小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2)在小组里说说小数乘小数应该怎样计算。
(3)先按整数乘法算出积是多少。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固案
练一练。
(1)你能给下面各题的积点上小数点吗?
(2)计算下面的题。
3.46×1.2 1.8×4.5 10.4×2.5
(3)总结小数乘小数的法则。
(四)实践练习十二1到3题。
《循环小数》教学设计5
一、教学内容:人教版五年级数学上册《循环小数》
二、教学目标:
1、知识与技能:
使学生理解循环小数、有限小数、无限小数的意义。掌握循环小数的两种表示方法。
2、过程与方法:经历循环小数的认识过程,体验探究发现的学习
3、情感态度与价值观:让学生感受数学的美与乐趣,激发探究的欲望,初步渗透集合思想。
教学重点:理解循环小数的意义。
教学难点:循环小数的表示方法。
三、学情分析:五年级的学生思维活跃,上课时能够专心听讲,能够
主动的发言,善于提问。学生在生活中已感受过循环、重复的现象
经历过将事物进行分类、整理的活动,具备了初步的比较、分类、归纳、概括等能力,为今天的学习打下了良好的基础。
教学流程:
一、活动引入,体验”循环”
1、学生列队踏步,踏步口令有什么特点?(板书:121121无限有限)
2.找规律,猜图形。(板书:依次不断的重复出现)
3、师:依次不断的重复出现,用一个词来说明?也就是“循环”出现。你在生活中遇到过这种循环现象了吗?(举例说说)
二、新知探究
不断重复的现象生活中还有很多,在计算中我们也会遇到
初步认识循环小数
课件出示例题:王鹏赛跑图
男生400米谁跑得最快?成绩如何?王鹏平均每秒跑了多少米?
(1)学生描述场景信息,根据信息,你能列出什么算式呢?400÷75(2)学生独立计算,指名板演。引导学生思考并回答:让学生通过实际计算,发现这道题无论除到小数点后面多少位,都除不尽。通过竖式计算,你发现了什么问题?(除不尽)
②这道题商的小数部分和余数有什么规律和特点?(商的小数部分不断的重复出现3,而余数重复不断的出现25)
③如果我们不断地除下去,它的商是多少?比如第5位是多少?第20位商是多少?第100位商是多少?(不管是哪一位,只要余数重复出现25,商就会重复出现3。)这样的除法算出的商应该表示为:400÷75=5.333
问题:省略号表示什么?让学生说出“”表示的含义。不写行吗?
2、出示例9:先计算,再说一说这些商的特点。
28÷18=
78.6÷11=
(1)先让学生独立列竖式计算。
①
(2)观察这道题,有什么相同点?(这两题的相同点是总也除不尽。)这两道题的不同点是什么?(前一道题商中是一个数字“5”不断重复出现,而后一道题,商中二个数字”6 3”在依次不断重复出现。)
3、教学循环小数的意义。
(1)谁能用自己的话说一说什么叫“循环小数”?(2)请大家写出几个循环小数。
(3)根据循环小数意义判断下面的数哪些是循环小数。
1.5222
0.1929292
5.314123
8.41616
讨论;为什么0.1929292和5.3141523不是循环小数?
你认为判断一个数是不是循环小数要注意那些问题?
4、自主学习,学会记法。
师:循环小数除了这种一般记法之外,还有一种简便记法。下面请同学们自学书中28页下面的《你知道吗》。把你认为有关的重要内容圈画出来,时间3分钟。
(1)什么是循环小数?你觉得重点词语有哪些?(2)什么是循环节?
(3)怎样简便写出循环小数?(4)怎样读循环小数?
学生反馈交流,根据学生回答,教师划出重点词并板书简写。5教学有限小数和无限小数。(1)计算下面两题:
15÷16
1.5÷7(2)讨论:这两题的商小数部分的位数有什么不同?(15÷16能除尽,商的小数部分的位数是有限的。1.5÷7除不尽,商的小数部分的位数是无限的。)想一想:两个数相除,如果不能得到整数商,所得的商会有哪些情况?(3)教师:两个数相除,如果不能得到整数商,会有两种情况。一种情况:除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限,也就是被除数能够被除数除尽。另一种情况:除到小数部分后,余数不断地重复出现,商也不断地重复出现,商里小数部分的位数是无限出现的。
小数部分的位数是有限的小数,叫有限小数,(绿色圃中小学教育网教师举15÷16=小数部分的位数是无限的小数,叫做无限小数。教师举1.5÷7 =循环小数是无限小数,学生举例,强调无限小数不一定都是循环小数。
(4)练习:计算下面各题,说一说哪些题的商是有限小数,哪些题的商是无限小数。
10÷9
1.332÷74
23÷3.3
三、巩固练习
1、下列说法对吗?(1)一个数中有一个数字或几个数字重复出现,这样的数叫循环小数。()
(2)8.3232是循环小数。()
(3)循环小数是无限小数,无限小数也是循环小数。()
(4)0.54848保留两位小数是0.54。()
2、下面的循环小数,请用简便记法写出来。3.28585()
0.02929()13.06969()
23.2323()
3、练习书法,小明把“我们在阳光学校健康成长”这句话依次反复写,第100个字应写什么字?
四、从质疑问难中,畅谈收获
通过这节课的学习,你有什么收获?或什么疑问?
循环小数有趣又奇妙,更多奥秘等着我们去探索去发现。
效果检测
学生在学习掌握循环小数的概念之后,能独立判断出循环小数,也能弄清有限小数和无限小数的区别。但对循环小数的两种表示方法还有些模糊。
板书设计:
循环小数
有限小数:小数部分的位数是有限的'小数。
无限小数:小数部分的位数是无限的小数。
一个数的小数部分从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字叫做循环节。写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末尾上面各记一个小圆点。
本节课设计与改进的教学反思
循环小数这部分内容概念较多,又比较抽象,是教学的一个难点。以前的教学中,我总是讲得多讲得细,总担心学生没听懂,参加国培学习以后,我认真审视自己教学工作中出现的问题,要想真正把课堂当作学生自己发展的天地,就要与学生站在一个平台上互动探究,在平等的交流中倾听,在学生激烈的争辩中做好引导,学生就会越来越喜欢数学课了。
1、迈好第一步
要想学生在数学课上有收获,学生就要有积极的学习状态。课始,让学生从熟悉的踏步生活现象中初步感知循环的特点,抓住了学生的注意力,自然地引入新知,接着我又让学生例举生活中有关循环现象的例子。不仅让学生体会数学与生活的密切联系,也让学生感知什么是“依次不断的重复出现”。什么在循环?分解了教学难点。
2、注重概念的生成过程。
以前的概念教学主要是通过教师的讲解和学生的记忆,这样容易造成学生被动地学习,使学生的思维有依赖性和惰性,不利于学生的后续学习和发展。在教学《循环小数》时,我引导学生去主动探究数学中的问题,通过让学生自己观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。在学生汇报交流自己的想法时,又提出问题让学生进一步思考。“怎么样来判断循环小数?”“为什么要加省略号?”两种循环小数写法有什么不同?哪种更简便?同时抓住概念中的关键词引导学生逐个理解之后,再对要点进行概括,从而使学生对循环小数概念有了一个全面、完整的认识。
3、恰当地处理教材
学生在探究循环小数的特点时,竖式计算对学生不是新知,但学生必须运用这个模型来研究循环小数,教学中,我让学生尝试自己计算,并引导学生观察做到哪一步就可以不做了,把重点放在引导学生观察竖式和发现规律上,让学生对循环小数概念中的关键词有了更为具体的理解和认识。
本节课依据新的《课程标准》及新的教学理念。注重了创设问题情境,激发学生学习兴趣。引导学生自主探索,参与知识形成的全过程,充分体现了教师主导,学生主体的学习氛围,使全体学生在数学学习中都得到了不同的发展,整体教学效果较好。不足之处是学生不能很明确地确定循环小数的循环节是什么,说明在培养学生的观察能力上还有欠缺,今后还需要在这方面再努力。
《循环小数》教学设计6
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2、理解“有限小数”和“无限小数”的意义。
3、培养学生发现问题,提出问题,解决问题的能力,提高观察、分析、判断能力。
教学重、难点:
理解循环小数的意义
教学过程:
一、创设情境
1、理解依次重复出现的意义。
从生活中出现的`一些现象引入,比如今天是星期几,谁会说?接着说能说完吗?为什么?
引出:这种“依次不断重复”的情况称为“循环”(板书:循环)
2、初步感知循环小数。
出示教材第33页例7情境图,引导学生观察并说出图意,并找数学信息,独立列式:400÷75,让学生用竖式计算,并说一说在计算过程中你有什么发现。
发现:余数重复出现“25”;商的小数部分连续地重复出现“3”。
3、引出课题。
追问:像这样除下去,能除完吗?(不能)
板书:循环小数
二、互动新援
1、认识循环小数
引导学生思考:为什么商的小数部分总是重复出现“3”,这和每次出现的余数有什么关系?
(当余数重复出现时,商就要重复出现)
引导学生说出:400÷75的商可以用省略号表示永远除不尽的商。(板书:400÷75=5。333……)
2、出示第33页例8的两道计算题,让学生自主计算,并说说商的特点。
78.6÷11算到商的第三位小数时,让学生停一停,看看余数是多少,然后再接着除出两位小数,指导学生和除得的前几步,比较,想想继续除下去,商会是什么?
通过观察比较,引导学生发现:余数重复出现5和6,商会重复出现4和5总也除不尽。
3、比较上面三个算式的商,你有什么发现?
400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字。78.6÷11的商,从小数的第二位起不断地依次重复出现数字4和5。
师小结:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、引导学生自主学习。
(1)循环小数的概念。
(2)认识循环节,
如:5.333……的循环节是3;
7.14545……的循环节是45。
(3)循环小数的简便写法
如:5。333……写作5。
6.9258258……和6.9 5
三、巩固练习
1、完成“做一做”的第1题
学生自主完成,集体订正。
2、完成“做一做”的第2题。
想一想,两个数相除,如果不能得到整数商,所得的商会有哪些情况?引出有限小数和无限小数。
四、小结。
这节课你们学到了什么,有什么收获?
《循环小数》教学设计7
教学目的:
1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。
2、培养学生总结规律的能力,使学生既长知识,又长智慧。
3、培养学生学习数学的积极情感。
教学重点:进一步掌握相关概念并建立联系。
教学难点:对循环小数的实际应用。
教学过程:
一、主动回顾,知识再现:
上节课我们学习了什么知识?
二、单项训练,夯实基础:
1、进一步理解循环小数的概念。
下面哪些数是循环小数,如何判断的?
0.666…3.27676…301415926…40.03666…100.7878
0.06262…3.203203…0.2142857142857…70.2641
2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?
有限小数
小数循环小数
无限小数
无限不循环小数
三、综合练习,运用提高:
1、求循环小数的近似值:P30第3题
先请学生说说取近似值的'方法,再让学生独立完成。
2、P30第6题
先观察这些小数的特点,再试一试.
请学生说出判断大小的过程,教师适时评价。
方法:把这些简便记法的循环小数还原。
师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习:P30第4、5题。
课后小记:
在今天的课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。
其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。
第八课时用计算器探索规律
教学内容:P29例10、做一做,P31练习五第7—9题。
教学目的:
1、能借助计算器探求简单的数学规律。
2、培养学生观察、归纳、概括、推理的数学能力,培养学生学习数学的兴趣和探索意识。
3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。
教学重点:运用规律进行计算。
教学难点:发现规律。
教学过程:
一、导入新课
同学们,你们知道计算器有什么好处吗?
计算器有这么多好处,它还有一个特别的功能,就是帮助我们发现规律。(板书课题)
二、自主探索
1、出示例10:
请大家先独立操作,思考你发现了什么规律,再在小组内说一说。
①商是循环小数②下一题结果是上一题的2倍(3)循环节都是9的倍数……
不计算,用发现的规律直接写出后几题的商。
问:你是根据什么来写的商?
2、用计算器验证。
小结:一旦发现规律,就可以运用规律解决问题。
3、独立完成“做一做”:
请学生先用计算器计算前4题,找出积的规律。
思考:你发现了什么规律?小组交流。
根据规律很快写出后两题的结果,全班交流校对。
三、请学生总结,也可质疑。
教师激励:肯定学生去探索规律后的秘密的探索精神,鼓励他们继续努力;希望学生在生活中,学习研究中去发现探索更多的规律。
四、独立练习:P31第7-9题。
激发学生兴趣
1、使用计算器,小组合作
任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?
2、小组汇报,展示过程,讨论发现。
3、采访学生,有什么感受。
师:仿佛掉进了数学黑洞,永远出不来,非常的神奇。
课后小记:
1、练习五第7题计算1234.5679*9,部分学生的计算器只能显示八个数字,所以结果为11111.111,其实这题的积应该是四位小数,正确结果为11111.1111。遇到这种情况,可先作指导。请学生看题判断积是几位小数,然后再解释说明。
2、数学黑洞学生们很感兴趣,如果有机会可再为学生们提供一些这种有规律的小知识,激发他们的学习兴趣。
3、作业第9题第1小题的的每后一个数都是前一个数乘2的积,再加0。1所得,这个规律难度比第2小题要大,许多学生较难发现,所以要适当引导。
第九课时解决问题(一)
——归一问题
《循环小数》教学设计8
教学目标:
1、理解产生循环小数产生的原因,认识循环小数,能正确使用循环小数表示商;
2、认识循环节,能正确进行循环小数的简写;
3、在猜想、验证过程中清晰地表述自己的观点和理由,培养交流的意识与能力。
教学重点:
认识循环小数,能正确使用循环小数表示商;认识循环节,能正确进行循环小数的简写。
教学难点:
理解循环小数产生的原因,能正确进行竖式的简写。
教学过程:
一、提示矛盾,感知循环
1、男女生比赛计算:15.6÷127÷3
2、观察思考:观察这个竖式,你发现了什么?
(余数重复出现,商就跟着重复出现。感知有限、无限)
二、深入研究,认识循环
1、思考:这是一种偶然现象吗?还有没有这样的例子,请同学们尝试计算。
出示例8:先计算,再说一说这些商的特点。
28÷18=78.6÷11
2、概括循环小数的概念
1>观察这些算式的商,可以发现有什么共同点,有什么不同点?
感知:都是无限的;
都有一个或几个数字依次不断地重复出现。
2>提示概念:
像这样的'小数就叫循环小数。学生读课本,互相交流,在这个定义中应该注意哪些词语?你是怎样理解的?
出示:一个数的小数部分,从某一位起,一个或几个数字依次不断地重复出现,这样的小数叫循环小数。
3、判断:下面哪些小数是循环小数?为什么?
5.78780.555……3.83999……3.010010001……
5、提示循环节概念,掌握简便写法
1>学生自学教材第34页有关循环小数的知识,全班交流,理解认识:
A.循环节:一个循环小数的小数部分,仿效不断重复出现的数字,就是这个小数的循环节。
学生举例说明。
B.循环小数的简写:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个小圆点。
举例:如5.333……写作:5.3(五点三,三循环)
6.9258258……写作:6.9258(六点九二五八,二五八循环)
强调:只需要写出一个循环节,简便记法只在首位和末位点上小圆点。
C学生尝试从简便记法怎样到一般写法。
强调:循环节只写一遍
只在首位和末位点上小圆点。
D.逆向运用:从简便计法展开到一般写法。
2、回顾竖式,说一说除到哪一位就能判定循环节。
(当余数第二次重复出现时,就可以停止)
3、练习,列竖式。指导学生根据余数情况尽可能早地判定循环小数,并用简便写法记得数。
2.29÷1.123÷3.3
三、巩固练习
课本34页做一做1:用简便形式写出下面的循环小数;
37页第9题:比较小数的大小。
《循环小数》教学设计9
教学目标:
知识与技能:
初步认识循环小数,能用计算器探索并指出一个循环小数的循环节。
过程与方法:
结合具体事例,经历竖式计算、观察、讨论并用计算器计算等,认识循环小数的过程。
情感态度价值观:在借助计算器进行数学探索的活动中,获得成功的体验,感受数学中蕴藏着许多的奥秘。
教学重点:
经历发现、了解循环小数的过程,了解循环小数的含义,能指出哪些商是循环小数。
教学难点:
循环小数的语言描述。
教学流程:
一、趣味故事导入主题
小故事——《讲不完的故事》。讲故事,说规律
【设计意图:从学生熟悉生活情景引出相关“循环”现象,使学生体会到生活中蕴含着丰富的数学知识,唤醒了学生的生活经验,激发学生的兴趣和学习信心。】
二、小组合作,探究新知
(一)小组尝试研究
1、竖式计算
6.21÷0.03=8.4÷0.56=
2、《循环小数》教学设计
1)试着列竖式进行计算。
2)在计算10÷3时,余数1不断的重复出现,商中的3也不断的xx,商的位数是xx的。(填有限或无限)
在计算83÷11时,余数xx,商中xx。
3)用计算器计算
58.6÷1138.2÷2.7
我的发现:10÷3的商和83÷1158.6÷1138.2÷2.7的商的共同点是xx
【设计意图:设计尝试小研究我们必须关注学生的已有知识经验、体现出层次性,我们可以从学生旧有知识,充分发挥旧知识的'迁移作用,为学生的解决尝试新知铺路搭桥。】
《循环小数》课上尝试小研究
1、用计算器计算
1÷9=2÷9=3÷9=4÷9=
我的发现:xx
2、不用计算,你能写出下面算式的的得数吗?用计算器进行验算。
5÷9=6÷9=7÷9= 8÷9=
3、直接写出下面算式的得数?
10÷9=11÷9=12÷9= 13÷9=
14÷9=15÷9=16÷9= 17÷9=
(二)小组合作学习。
小组合作要求:
组长负责组织和分工,人人说一说自己的学习收获,在组内交流自学中不清晰的地方。发言要有顺序,当一人发言时其他成员要认真倾听。小组内解决不了的问题记下来,在班级展示时,交流解决。
【设计意图:小组合作探究的过程,拓宽了学生的参与面和开口面,通过每个学生思维的碰撞,逐渐将知识进行完善、系统化。同时抓住一些重点的内容引发学生的思考,同时发展学生的数学思维能力。】
(三)班级展示汇报。
1、同组内交流完了吗,哪个小组先来和大家一同分享你们的研究结果?
要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价。或者对他们的研究方法进行补充。
2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。
在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。
组长:哪个同学对我们小组的汇报有评价、补充或提出不懂的问题?
其他组的学生进行评价、补充、质疑。
(四)教师点拨提升。
1、教师适时点拨引领:
1)10÷3中余数1重复出现,所以商3不断重复出现;
2)循环小数是从小数的某一位起;循环小数是无限小数。
3)怎样确定商是循环小数呢?循环小数的表示方法。介绍循环节。
2、互相纠错,小组内同学互相检查尝试题做得是否正确,错误的加以改正。
【设计意图:班级展示提升是小组内形成统一的观点向全班同学展示交流并引发深入思考的过程,通过小组间思维碰撞,以及老师精彩的点拨引导,使教学重难点得以突破,使知识更加系统化,使学生将知识内化于心。】
三、挑战自我
一、请同学们判断下面哪几个数是循环小数,为什么?
0.9993.14159260.5477453.212121
5.027276.416416
二、判断
1、9.666是循环小数.
2、0.88保留三位小数是0.880
《循环小数》教学设计10
教学内容:
第九册第三单元第27—29页。
教学目标:
1.让学生在自主探究、合作学习中理解并掌握循环小数、无限小数、有限小数、无限不循小数以及循环节的意义,正确读写循环小数。
2.能用循环小数表示除法里的商。
3.培养学生的抽象概括能力,观察比较能力。
4、向学生渗透集合的思想,激发学生的学习兴趣。
教学重难点:
正确理解循环小数的意义。
教学过程
一.故事引入
1.讲故事。老师给同学们讲一个故事:从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……
师:像这样依次不断重复地出现的现象叫循环现象。
问:生活中还有象这样依次不断重复出现,无穷无尽的现象吗?你能举例吗?
2、联系实际生活
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友(板书:小数)大家想认识这位新朋友吗?
师:在认识这位新朋友之前,我们先来一次计算比赛,好不好?
[采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生的逻辑思维能力。]
二、研究问题,探究新知
(一)研究有限小数和无限小数
1.分组计算,感知概念。
(1)0.595÷3.4(0.175)(2)34÷6(5.66······)
2.学生选择喜欢的一道计算,指名派个代表上来板演。1分钟后喊停。
3.师:引导看黑板,核对第一题,宣布第一组获胜。
4、第二题,你们有什么想法?(商除不尽)1。34÷6= 5.66······,引导学生观察商有什么特点。生:老师,我发现这道除法题除不尽,商总是重复出现6。
师:为什么会重复出现“6”呢?
生:因为余数重复出现“4”了,所以……师:这么说,34÷6的商里有多少个“6”呢?
生:有无数个“6”。
师:既然是无数个,可以怎么表示呢?
生:我认为可以用省略号表示有无数个“6”。
(板书:34÷6= 5.66······)
5.指出:像0.175,这样小数部分的位数是有限的小数给它个名称叫有限小数。(板书:有限小数)那么第2题的商除得尽吗?除不尽可以用省略号表示,猜一猜,这样的小数会叫什么名称呢?为什么?
(板书:无限小数)
(二)认识循环小数
1、出示59.6/11,让学生除到商是五位数小数时停笔。
师:想一想,如果继续除下去,商会怎样?
生:商里会依次不断的重复出现“1”和“8”。
师:你是这样想出来的呢?
生:因为余数重复出现“2”和“9”,所以商就会重复出现“1”和“8”。
师:是不是这样的情况呢?继续除除看。
师:谁能说出这道题的商。
生:59.6除以11等于5.4181818等等。
师:“等等”用什么符号表示?能不能不写省略号?为什么?
生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多1818。师:(出示下组题)能说出省略号表示的意思吗?
4/9=0.444…… 7/12=0.58333…… 13/55=0.2363636……
[让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。]
2、概括。
师:观察这些小数,它们都有什么特点?
生:一个小数,几个数字重复出现。
生:一个小数,几个数字依次不断地重复出现。
生:一个小数,从某一位起,一个数字或者几个数字依次不断地重复出现。
师:那这样的小数,叫什么小数呢?(循环小数)。这就是我们今天要学习的“循环小数”(板书课题),谁再来说一说什么叫“循环小数”?
师:说的很好,请同学们看看书上写的'和XX同学刚才说的还有什么不同?
生:书上多了“小数部分”这几个字。
师:书上为什么要强调从“小数部分而不是从整数部分的某一位起,一个数字或者几个数字依次不断
重复出现。
3、判断。
师:请同学们判断下面哪几个数是循环小数,为什么?(课件显示)
777…… 3.1415926……
3.23232323
6.0373737
7.516516……
学生判断后老师组织讨论。
(1)师:3.232323是循环小数吗?
师:小数部分的“23”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?
生:虽然“21”重复地出现三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。
(2)师:3.1415926……是无限小数吗?
师:是循环小数吗?为什么?
生:因为小数部分没有出现一个或几个相同的数字,所以……
(3)师:在0.547745……这个小数中,“5”、“4”、“7”这三个数字已重复出现了两次,他是不是循环
小数呢?为什么?
生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地出现,所以它不是循环小数。
(三)循环节
师:“3.333……”中不断地重复出现的数字是哪一个?
(3)在“5.2727……”中不断地重复出现的数字是哪一个?(2、7)在循环小数中,依次不断重复出现的数字有个名称,请看教科书第101页。
师:什么叫循环节?请找出以上判断题中循环小数的循环节。
生:这个数的循环节是“21”。
师:对吗?
生:不对,因为这个数不是循环小数,所以它没有循环节。
师:对的,循环节只有在循环小数里才会出现,如果不是循环小数也就没有循环节。
(四)循环小数的简便记法
1、讲解。
师:循环小数的一般写法是把循环节写出两遍到三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一圆点,这个点叫循环点。
2、练习。
(1)写出5.333……的简便记法。
(2)写出判断题中循环小数的简便写法
三、巩固练习
1、判断
2、找数
四、课堂小结
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学的知识说明这几道题的商吗?
《循环小数》教学设计11
教学内容:
义务教育课程标准实验教科书北师大版小学数学四年级下册书69—70页
教学目标:
知识与能力
通过计算两只蜗牛每分爬行多少米,发现商和余数的特点,知道什么是循环小数。会表示循环小数,会用四舍五入法对循环小数取近似值。
过程与方法
通过动物乐园的情景,体会生活中的实际问题,进一步体会数学与生活的密切联系,利用已有知识,经历探索循环小数的过程,发展应用意识。
情感、态度与价值观
通过探究现实生活中的相关问题,体会数学与现实的密切联系,激发数学学习的兴趣,培养数学应用的的意识,通过小组合作,探究学习,培养团队协作的意识,养成实事求是的科学态度。
教学准备:
关于自然界循环现象的资料。多媒体课件
教学重点:
循环小数的认识,准确地判断循环小数
教学难点:
能够正确表示循环小数
教学过程:
一、创设情境,引导生疑。
1、听故事,认识循环
课件出示《和尚和庙》的故事,教师讲故事,并让学生接着往下讲。并提问:你们为什么能很整齐的将这个故事续讲下去?
生:因为这个故事就是将这四句话重复讲下去。
师:也就是说,按这样相同的次序不断地重复出现。如果老师让你们继续讲下去,不准停,你们能讲多少次?
生:无数次……
2、课件出示找规律填空,指名学生完成并说说你发现的规律。师:这些图片和刚才的故事都是依次不断重复的出现。我们把这种不断重复的现象叫做循环。
3、提问:你能说出生活中的循环现象吗?
其实只要我们留心观察,就能发现这些依次不断重复出现的现象在生活是普遍存在的。今天我们就一同到数学王国里去找找看。
【设计意图:生动有趣的活动容易吸引学生的注意力,激发学生的学习兴趣。这个活动简单有趣,学生容易明白教师的意图,利于形成对“循环”这一概念的初步认识。为了让学生更深地感受重复现象,教师让学生说一些生活中的重复现象,这是密切联系生活实际,尊重学生已有的知识经验,让学生懂得数学来源于生活。】
二、探索交流,引导解疑。
(一)、认识循环小数
1、出示教材主题图:小蜘蛛和小蜗牛正在进行激烈的爬行比赛,请同学们认真观察,从图中你发现了哪些数学信息?能提出什么数学问题?
2、课件出示问题:谁爬得快?指导学生列示,(师板书:73÷3 9.4 ÷11)
3、指名学生上黑板列竖式计算。在计算的过程中想想你发现了什么规律。
4、是呀!73÷3的余数不断重复,商也不断重复,永远都除不完,它的商可以这样写:24.3333后面加省略号,表示还有无数个3,这样的数叫做循环小数。
5、让学生总结一下什么是循环小数。课件出示循环小数的概念,齐读。
【设计意图:学生通过自主探究与合作交流认识了循环小数,使学生全面参与新知的产生、发展和形成过程,真正体验到探究的乐趣和学数学的价值,有利于学生今后的再学习。】
(二)、探索循环小数的读写
1、学习循环小数的读法
让学生自己试着读一读,教师指导。(板书24.333读作:二十四点三,三循环。0.85454读作零点八五四,五四循环)
课件出示练习题火眼金睛。快速认出哪些是循环小数?让学生分组完成。
【设计意图:在学习新概念后,紧接着安排这两道直接应用新概念的练习,以达到及时强化记忆、巩固概念的目的。】
2、学习循环小数的简便写法
师:你们想不想知道循环小数还有其他表示方法,那就请我们的`数学万花筒来告诉我们吧。(课件出示数学万花筒)。读了这段话你知道了什么?
【设计意图:让学生自主探究,自己寻找知识,有利于发挥学生的主动性,调动学生的积极性】
3、在黑板上粘贴纸条,让学生上黑板找出循环小数的循环节,并写出简便写法。
(三)、对循环小数取近似值
师:我们计算时如果用到那么一长串数字,会很麻烦吗?(会)那么我们根据需要可以用四舍五入法取他们的近似值来进行计算。前面我们学了四舍五入法取一个数的近似值,同学们还记得吗?取循环小数的近似值的方法和整数的一样,都要用到四舍五入的方法。
课件出示我能行的练习题,学生以小组为单位抢答完成。
【设计意图:通过根据实际情况,取循环小数的近似值,加强知识间的联系,培养实际应用能力。】
(四)、了解小数的分类
1、课件出示一组小数,开火车读
2、要求学生把这些小数分成两类,告诉学生分为有限小数和无限小数。
3、再要求学生把无限小数分为两类,可分为无限循环小数和无限不循环小数。
【设计意图:使学生全面参与了解新知识,真正体验到探究的乐趣,感受到数学的美。】
三、拓展应用,内化提高
1、摆一摆:
每组发一组数字卡片,让学生摆成循环小数,并记录下来。在规定的时间内看哪组摆的循环小数最多。
2、课件出示:小刚练习书法,他把“我们是共产主义接班人”这句话依次反复写,第62个字应写什么字?小组讨论,集体反馈。
【设计意图:这两个练习是发展题,一方面让学生研究循环小数的规律,另一方面培养学生动手操作能力和逻辑思维能力。】
四、全课小结
师:通过这节课的学习,你有哪些收获?
【设计意图:让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。】
《循环小数》教学设计12
教学目标:
1、会根据需要,求出商的近似值。
2、培养学生数感和灵活应用意识。
教学过程:
一、基础练习
1、取P26,第10题,48÷2.3(保留一位小数)3.81÷7(保留两位小数)审题。求商的近似值的方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。
独立完成,请生板演。
二、巩固练习。
1、独立完成P2610剩余的题
2、独立完成P2611再全班交流,如何比较。
3、P2613学生独立完成全班交流。如何处理结果?
小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。
你还能提什么数学问题?教师板书。
三、发展练习
1、P26第12题
请学生说说是如何思考的?肯定多种策略解决问题。
2、教师根据日常教学情况进一步补充针对性的练习
教学内容:循环小数P27-P28
教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的'简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学过程:
一、自主探索,获取新知
1、师谈活引入新课
我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。
2、初步感受循环小数的特点。
观察竖式,你发现了什么?(组织学生小组内交流)
可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢?你为什么使用省略号?(师板书)
3、总结概括循环小数的意义
出示:28÷1878.6÷11
先计算,再说一说这些商的特点。(请生板演计算结果)
学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。
4、巩固练习:下列哪些是循环小数?
0.999…52.52525…4.1677…3.212121…3.1415926…
学生评议。
5、介绍简便记法
如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)
6、看书P27-28第一自然段,及了解“你知道吗?”
7、理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?
学生小组讨论,汇报。
师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。
学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。
二、学生小结
三、巩固练习
全班练习:19÷111.08÷3.313.25÷10.6报名板演,说出商是什么小数,依据是什么?
课后小记:
课题八:循环小数练习
教学内容:循环小数(二)P30
教学目的:
1、学生进一步巩固对循环小数概念的理解。
2、能比较两个(含)循环小数的大小。
学具准备:计算器
教学过程:
一、主动回顾,知识再现。上节课我们学习了什么知识?
二、单项训练,夯实基础。
1、进一步理解循环小数的概念。
完成P30.1
全班练,指名板演,哪些题的商是循环小数,如何判断的?
2、进一步掌握循环小数的写法,完成P30.2。
你如何表示商?(自己选择表示方法),全班交流校对。
3、求循环小数的近似值。完成P30.3。先请学生说说取近似值的方法,再让学生独立完成。
三、深化练习。完成P30.6先观察这些小数的特点,再试一试.
请学生说出判断大小的过程,教师适时评价。
1、想到把这些简便记法的循环小数还原。
2、2、1.23O1.233,只还原到第三位小数。
师小结:需要先观察,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习P3045
课题九:用计算器探索规律
教学内容:用计算器探索规律P29
教学目标:
1、能借助计算器探求简单的数学规律。
2、培养学生观察、归纳、概括、推理的数学能力。
3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。
教学过程:
一、激发学生兴趣
1、使用计算器,小组合作
任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?
2、小组汇报,展示过程,讨论发现。
《循环小数》教学设计13
教学目标:
1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。
2.初步认识有限小数和无限小数。
3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。
教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数。教学准备:教师在小黑板上准备多题练习题。教学过程:
一.
创设情景师:你们最喜欢星期几啊?
师:一个星期七天的出现有什么规律?
引导学生:一个星期的`星期一到星期日总是不断地出现。(板书:不断、出现)
(四)小结学习内容
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?
出示:2÷9 = 0.222……
5÷12 = 0.4166……
9÷55 = 0.16363……
三.巩固练习
1、判断题。(对的画“√”,错的画“×”)
(1)0.7777是循环小数。
(2)0.07是混循环小数。
(3)2.07 = 2.07
(4)1.3>1.333
(5)循环小数13.24324……可以写作13.24。
2、找数。在下列数中
(1)比1小,循环节是三位数字的纯循环小数有((2)比1大,循环节是一位数字的混循环小数有(10.101
3.212
0.07
0.414
(四)课堂作业:练习七第7、8题。
(((((2.45)))))。)。0.101)
循环小数教学设计
(五)课堂小结与质疑。
《循环小数》教学设计14
一、教材分析
本节课是人教版义务教育课程标准实验教科书第九册第二单元的内容。“循环小数”是学生在学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。通过学习,使小数概念的内涵从有限小数扩展到无限小数。其中对于循环小数概念的表述比较抽象,是教学的一个难点。
二、教学目标
1、知识目标:
初步理解循环小数、有限小数、无限小数的意义,能正确地区分有限小数和无限小数,能用简便记法表示循环小数,能用循环小数表示除法的商。
2、能力目标:
培养发现问题、提出问题、解决问题的能力,提高观察、分析、比较、判断、抽象概括能力。
3、情感目标:
感受数学的乐趣,激发探究的欲望,初步涉透集合思想。
三、教学重点、难点
对循环小数概念的理解及抽象的表达是学生学习的重点和难点,也是教师教学的难点。
四、教学过程:
一:课前引导初步感知
1、拍节奏游戏
课一开始,我给同学们拍出一下、二下、一下、二下的节奏,然后让学生接下去继续拍。学生集体拍的节奏很整齐,因为他们也是按照先拍一下,再拍两下的节奏拍的。这时,老师问学生:如果你们这样不断的重复拍下去,不叫停止,能拍多少次?学生会说很多很多次,也有人会说无数次,这时老师及时问学生:像这样拍的次数是有限的还是无限的'?那么你们刚才拍的次数是有限的,还是无限的?
[设计意图:利用游戏的方法导入新课,充分调动学生的积极性,学生在游戏中发现“不断重复出现的现象”。这样设计一是直观,二是引人入胜,孩子们乐于参与,同时体会到生活中蕴涵着如此丰富的数学知识,使学生初步感知了“循环”、“无限”、“有限”等概念]
2、猜一猜
按照小动物出现的规律,猜一猜下一个会出现什么小动物,再一下呢?
学生猜出后请学生说出理由
教师引导着学生继续猜下去,当猜到第十个图形时,出现了“…”
让学生来解释省略号的意义,学生又一次感知了依次不断重复出现、无限这些概念。
3、生活中不断重复的现象:
学生举例说明,教师提供素材。(课件展示)
[设计意图:采用从直观到半抽象的方法去认识新的概念,从学生共同参与的拍手游戏,到熟悉的有规律的排列,再到生活中的自然现象,这些都无形中激活了学生已有的生活经验和知识储备,学生们再一次体验到“依次不断重复出现”也就是“循环”现象。]
二:自主探究,获取新知
1、第一次探究实践
出示教材P27例8,王鹏赛跑图
王鹏400米只用了75秒,平均每秒跑多少米?
讨论:
计算后,你有什么发现?出现这种现象的原因是什么,你准备怎样写出结果?
[设计意图:第一次实践,学生会发现这道题“400÷75”除不尽(无限小数)。原因是余数25重复出现,商3也重复出现(这里是从十分位起一个数学重复出现)所以永远也除不完,商的最后只能用省略号表示。学生第一次真正体验了在小数除法中商出现“循环”的现象,初步形成“循环小数”的概念。]
2、第二次探究实践
用除法竖式计算:
28÷18=78.6÷11=
讨论:
实践后,你有什么发现?它们的商有什么特点?怎么会出现这样的现象?
[设计意图:第二次实践,学生会发现第一次实践的结论依然存在,同时发现余数依次重复出现,商也从小数部分的某一位起一个数字或几个数字依次不断重复出现。]
板书一个数字几个数字依次不断重复
3、概括总结
这些小数就是我们今天要学习的“循环小数”(板书课题),一个数的小数部分,从某一位起一个数字或几个数字依次不断重复出现,这样的小数叫“循环小数”。
4、提问
(1)认识了循环小数,看看描述它的这句话,你有不理解或不清楚的地方吗?
师生共同回顾循环小数的关键词语
(2)判断:下面哪些是循环小数?并说出理由
0.37570.417417…3.1616…3.2121213.1415926…
1.66…5.7234242…
(3)学生认识了循环小数,也能判断循环小数,现在你能说出具有怎样特征的小数是循环小数吗?
(4)根据这些特征,你能否自己写两个循环小数?在小组中与同伴交流。
[设计意图:两次探究实践让学生充分的体验循环小数形成的过程,对概念的再次解读,判断实践、循环小数特征的表达与自编循环小数,这一系列环环相扣的教学活动有效地加深了学生对循环小数意义的深刻理解,突破了学生学习中的难点]
5、自学教材,扩展新知
(1)带着问题阅读教材
①什么叫循环节?
②循环小数还可以怎么写?可举例说明改写的过程。
③这样写的优势在哪儿?
[设计意图:教材是学生学习活动的重要资源,对于学生通过自己阅读能解决的知识,教师不妨通过设计问题链,引导学生有目的地阅读,“扶”中有“放”,让学生与教材对话,提高学生自主学习的能力。]
(2)用简便方法写出循环小数
出示上面提问中的循环小数,要求学生用简便方法表示:
0.417417…1.66…5.7234242…3.1616…1.1380413804…
交流,总结得出用简便方法表示循环小数的要点:确定数位,划出循环节,书写加点。如果循环节是多位数的,只在循环节的首位和末位上加上圆点。
(3)小组自主活动,每人任意写一个循环小数,组内交流互换,并用简便方法书写。
[设计意图:在学生独立阅读教材、理解循环节的概念后,让学生动手实践,通过交流总结,进一步加深用简便方法写循环小数的认识与理解。]
6、回归“循环小数”的本质,引出有限小数和无限小数
计算:2.4÷3=28÷4=0.75÷2.5=
讨论:
(1)、计算所得的商有什么特点?
(2)、两个数相除,得到的商会出现那些情况?
总结:两个数相除,商可能是整数,如果得不到整数商会有两种情况。小数部分的位数是有限的小数叫有限小数;小数部分的位数是无限的小数叫无限小数,循环小数是无限小数。
板书整数小数有限小数无限小数
[设计意图:学生在充分理解循环小数的概念的基础上,水到渠成地引出无限小数和有限小数这两个概念,学生了解的小数范围随之扩大了,在有限小数的基础上又增加了无限小数,而循环小数就是一种无限小数]
三:优化练习,培养思维
1、下面哪些小数是有限小数,哪些小数是无限小数?指出循环小数的循环节,并用简便方法表示。
3.1415926…61.6161…0.1010010001…
10.7037030.7373
2、讨论
下面的等式成立吗?说说你的理由:
这道题的设计会引起学生们的争论,数学问题越有争论才更能显示他的魅力,学生经历了思辨过程,才会真正发现这两个循环小数的内涵。
[设计意图:这里的两个练习,从学生实际出发,重在概念的辨析和认识的深化。其中第1题渗透了无限不循环小数(无理数);第2题则引导学生逆向思维,把用简便方法表示的循环小数进行还原,从而发现这两种不同表现形式的循环小数其实是相等的。
四:回顾总结提升智慧
在这一环节我采用师生谈话的形式,让孩子们谈收获,还有什么问题和想法?最后激励孩子们关于无限小数的知识还有很多,比如无限小数中除了循环小数还有不循环小数,感兴趣的同学可以利用课余时间去找一找这样的数。
《循环小数》教学设计15
教学目标:
1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。2.初步认识有限小数和无限小数。
3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数。教学准备:课件。教学过程:
一、创设情景
师:你们最喜欢什么季节?师:你喜欢的季节还会出现吗?师:四季的出现有什么规律?
师:像一年四季不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例
师:生活中有很多循环现象,数学中有没有这种现象呢?我们一起去找一找。(引出课题)
二、自主探究
(一)初步认识循环小数
1、先看算式1÷32、你说我写,看计算过程中你能发现什么?
3、师板书,在计算过程中引导学生发现1÷3这个算式的两个特点:1.余数重复出现“1”;2.商的小数部分连续的重复出现“3”。
4、师:像这样继续除下去能除完吗?
5、师:怎样表示这种个永远也除不完的商?这种商有些什么特点,就是我们今天要研究的问题,也是我们要认识的新朋友——循环小数
(二)自主探索循环小数
1.刚才我们已经发现了这个算式的特点,下面我们探讨一个问题,为什么上的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?
引导学生发现:当余数重复出现时,商就要重复出现:商是随余数重复出现才重复出现的。2.师:猜想一下,如果继续除下去,商会是多少?他的第四位商是多少,第五位呢?
学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现1,它的商也就重复出现3.师:是这样的吗?我们可以接着往下除来看看。验证。师:那么我们怎样表示1÷3的商呢?
引导学生说出可以用省略号来表示永远除不尽的商。
师:像5.333这样小数部分有一个数字依次不断重复出现的小数,就是循环小数。
(三)进一步认识循环小数。
师:下面我们来继续研究循环小数,请同学们用竖式计算78.6÷11学生先独立计算,教师课件出示:1.这个算式能不能除尽?2.它的商会不会循环?
3.如果循环它是怎样循环的?(学生计算,然后全班汇报)
师:你觉得这样的算式除到哪一位就可以不除了?指导学生说出,只要余数重复了,就可以不除了。师:为什么?
引导学生说出:因为像这样的算式余数循环,商也跟着循环。师:你能标出这个算式的商吗?
师:下面我们来继续研究循环小数,请同学们用竖式计算1.5÷7教师课件出示:
1.这个算式能不能除尽?2.它的商会不会循环?
3.如果循环它是怎样循环的?(学生计算、然后全班汇报)
师:比较0.333和7.14545,0.2142857142857你觉得这三个循环小数有什么不同?
师:像5.333,7.14545,0.2142857142857,这样的小数都是循环小数。你能说出几个循环小数吗?学生说,师板书。
师:观察这些循环小数,说说他们有什么共同之处?学生汇报教师点拨。
刚才同学们讲的都有一定的道理,下面我们看看书上的结论。学生自由朗读。
课件出示:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。▲辨析概念
1.读懂了吗?老师来检验一下你们理解的情况,出示:判断:
A、一个数,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。()B、一个数的小数部分,从某一位起,一个数字或者几个数字重复出现,这样的小数叫做循环小数。()2.通过刚才的判断,你认为概念中那些字是比较重要的,读出这几个字的重音,集体朗读一遍。请你判断下面那些数是循环小数,为什么?(课件)0.999…
5.02727…
6.306306…
3.212121
3.1415926…
0.547745…
四、自学“循环小数”的相应新知,并尝试应用。
(一)、认识有限小数和无限小数
师:3.212121不是循环小数,那它是什么数呢?板书:有限小数
师:在3.1415926和0.547745小数中,是不是循环小数呢?为什么?师:那这三个数是什么数呢?板书:无限不循环小数
课件出示:小数部分的.位数有限的小数是有限小数。小数部分的位数无限的小数是无限小数。请同学们说几个有限小数,再说几个无限小数。
(二)、认识循环节
一个循环小数的小数部分,依次不断重复出现的数字,有一个名字叫循环节。
课件出示:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。你们能写出下面三个循环小数的循环节吗?
0.999的循环节是()
5.02727的循环节是()
6.306306的循环节是()
(三)、循环小数的简写
1、我们认识了这么多的循环小数,你们认为写循环小数麻烦吗?
2、课本上为我们提供了一种简便的写法,大家想不想了解一下。
课件出示:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。学生自学
3、学会了循环小数简写的方法了吗?好!我们来试一试。把下面循环小数用简便方法写出来,并指导读的方法。7.44…
14.1414…
0.671671…
把循环小数的简便形式改写成一般形式,你会吗?
2.49=
7.518 =
42.512 =
六、巩固练习
一、下面的数中,哪些是循环小数?将它们表示用简便形式表示出来:0.3757…
0.417417…
1.66666…
5.7234242… 3.161616…
4.3737 1.1380413804…
0.50505…
二、判断题。(对的画“√”,错的画“×”)
①一个小数从某一位数起,一个或几个数字依次不断重复出现的小数叫做循环小数。()②0.666是循环小数。()③0.7777是循环小数。()
④1.306306=1.306。()
⑤9.219219,循环节是921。()⑥0.07是有限小数。()⑦循环小数是无限小数。()⑧无限小数是循环小数。()
三、根据实际需要,取它的近似数。
0.245
(保留两位小数)0.245
(保留三位小数)
四、比较下面两个数的大小。
0.33 〇
0.3
1.23 〇 1.233
1.45 〇 1.45
七、全课总结。
通过这节课的学习,你有什么收获?
思考题、如果用A、B、C表示不同的三个数字,如:A.BBCBBC可以简写成什么数?这个小数的小数部分第一百位是什么?
【《循环小数》教学设计】相关文章:
循环小数教学设计10-07
《循环小数》教学设计04-05
循环小数教学设计01-11
循环小数教学设计02-10
《循环小数》教学设计09-02
循环小数练习的教学设计07-24
循环小数教学设计[优秀]02-11
循环小数教学设计(集合)12-26
循环小数教学设计11篇10-06
循环小数教学设计15篇04-14