- 《三角形内角和》教学设计 推荐度:
- 三角形内角和教学设计 推荐度:
- 初中三角形内角和教学设计 推荐度:
- 相关推荐
《三角形内角和》的教学设计
作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计应该怎么写才好呢?以下是小编整理的《三角形内角和》的教学设计,仅供参考,希望能够帮助到大家。
《三角形内角和》的教学设计1
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的.方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
《三角形内角和》的教学设计2
三角形内角和教学设计
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境揭示课题。
师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。
师:那??其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的`内角和是1800”。师:(出示一个大三角形)它的内角和是多少度?生:180 °
师:(出示一个很小的三角形)它呢?生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
《三角形内角和》的教学设计3
1. 清晰之问引其疑
提问对学生来说是引发思维的出发点,因此提问应是在学生对某些数学现象、某些数学研究有了一定的感知和认识的基础上进行的。教师提问学生必须有明确的提问目的和清晰的表达,方能促使学生对新知产生疑惑,激发兴趣,形成体验。
教学片段A:(七下《认识三角形》第一课时)
(上课铃声响后,师生行礼毕)
师:同学们,今天我们一起来学习新的知识,请同学们首先回顾下以前所学过的几何图形有哪些?
生1:学过了三角形、正方形、长方形……
生2:还有圆、四边形、平行四边形、五边形……
师:那么大家想一想,我们学过的三角形如何能构成?
(沉默稍许,一生举手)
生:三角形两边之和大于第三边(表情不自信,低头小声!)
师(一怔):噢!这说明了这位同学预习了新课内容,但我问的不是这个意思,我问的是如何构成三角形?(生有议论,但无人举手)
师(略急):大家请看黑板上的图形(指着三角形三边)这是什么?
生(齐声):边!
……
师:那么三个内角如何表示呢?
生:∠A,∠B,∠C
师:回答正确!有没有同学会用符号记作三角形呢?
一生举手上黑板书写 ABC
师:字母有没有顺序要求呢?生(齐声):没有!
师:请同学们打开补充练习完成第7页第4题。
生做题,师巡视指导……
此片段是苏科版七(下)第七章《认识三角形》第一课时新课引入部分。以提问形式进行,该师主要提问了13余次,不能说教师没有组织教学的提问意识,但却有不少设计可以再推敲!概括起来,其提问主要存在的缺憾有两点:“问无据,问不明”!
有效的提问必须从学生的实际出发,注重学生的年龄特征、知识水平和接受能力。其设计的目的立足于教材内容和学生的“最近发展区”,让学生能通过努力思考建构地认识新知!如果没有这样的问题设计的依据,随心所欲,信口开河,那么我们所设计的问题只是为了问而问,意义甚小!片段中教师开始提问学生回顾小学的旧知意图似乎是在通过回顾图形引入到三角形知识的认识,但由于学生的理解角度和学过的图形较多,回答不免散而耗时,不能及时切入新课,其问题与本节内容相去较远,有“敲边鼓”之嫌!这样的问题设计过多便会冲淡了学生的学习之趣!同样,问题中教师提问学生“三角形边还可以怎么表示?能不能用小写字母表示?”的设计笔者认为学生无人敢答不是无人不知,而是学生的最近发展区带来的对新知的不自信!教师可以这样设计:“三角形的边是线段,线段除了用大写字母可以表示,还可以怎么表示?那么是不是随意的用小写字母表示呢?大家通过预习能不能找到用小写字母表示的特征?”这样的设计虽不能说视为最佳,但其一可以引导学生认识三角形的边是线段,线段可以用小写的字母表示,另则可以促使学生自主去找到用小写字母表示边的特征!符合新课程中要求学生形成学习数学体验的要求!所以精巧之问须有精心准备!明确而有依有据的问题设计要求教师课前必须把握教材,摸清学生知识的基础,把问题设计在学生已有的知识基础上,这样才能不做无凭无据之问!
2. 多变之问激其趣
新的知识点形成之后,它还可以发散、深化,使知识得以迁移、发展,从而对学生问题的设计不单一,不固定是激发学生学习兴趣的重要方法!
多变之问在于(1) 变形式;(2) 多迁移;(3) 悬而不释
片段B:(《三角形内角和》)
师:同学们!我们小学学过了三角形的相关知识,请同学们根据你们的所学完成下面的练习!
(师生共同完成练习)
师:同学们完成的很好!那么有没有同学能告诉大家你计算角度的.依据是什么?
生:我是根据三角形内角和为360度进行计算的!
师;回答的很好,这个知识我们小学就知道了,那么今天我们就一起来研究为什么三角形的内角和为360度呢?请同学们分组讨论!
(生分组热烈讨论,师参与并指导!)
师:同学们讨论的非常积极!请同学们以小组为单位发表你们讨论的结果!
生:我们小组是通过动手操作说明三角形内角和为360度的。
(生上讲台示范)
师:他们小组将一个三角形三个内角撕下拼成平角说明内角和为360度,是否正确?
生:正确!
师:通过撕纸说明是一种直观的感受,大家再想一想有没有其他方法说明呢?
生:用平行线的性质来说明!
师(没有评价):请同学们再思考看看!除了这样的想法有么有其他想法。
生:我还有一个想法!也是利用平行线性质来说明!
师:因为课堂时间有限,大家讨论很积极,思路也很多,刚才两位同学展示的完全正确,他们都是借助了平行线的性质进行了说明!当然,有些其他做法的同学,我们课后再继续讨论!
这个教学片段中教师的问题设计并不是很多,但总体来看还是有可取之处的!这样的设计紧紧围绕了问题设置的目的而展开,才开始的三角形内角和知识的再认识的问题设计不单一和老套,没有“三角形内角和为多少的”开门见山式!而是以习题形式取代了对三角形内角和知识的回顾,让学生再体验中去感受以前所学过的知识点,既复习了旧知,也将知识进行了初步应用。后面几个问题的设计则是将学生的思维进行了迁移,拓展了学生的思路,其中有些地方教师并不给予当即的评价,悬而不释!目的在于引导更多的学生参与进来,促使更多的学生有信心进行思考回答!当然,寻找知识的迁移、发展点,让我们的问题问中有变应注意其实效性和可行性,应从知识的本身出发做适当扩展,切不可以因变而随意迁移知识点,加深知识难度!
3. 有别之问树其志
所谓“有别之问”即是我们的问题设计应该考虑学生的不同层次,应考虑不同学生的知识水平和接受能力!对问题的设计应有铺垫,由浅入深,对基础薄弱的学生所提出的问题 要求过低或过高都不能激发学生的创新思维和积极性。因而我们设计问题时要注意合理行,层次性,注重面向全体学生,按班级中上等学生的水平来设计,同时也要顾及学生的个性特点和个体差异,以发挥每个学生的学习兴趣!
片段C:(平行线判断的说明)
如图,AD//BC,∠A=∠CAB与DC平行吗?为什么?
这个问题原题目对于多数同学而言有些难度!因而就需要教师在课前作好问题的设计!比如可将此题的问题设计成如下的问题串:
(1) 根据AD//BC,同学们能判断哪些角相等?
(2) 结合∠A=∠C,大家还能得到什么结论?
(3) 如果∠B=∠C,你能到哪两条线段平行?
通过这样的问题串的设计并针对问题的层次有区别的进行提问,步步引导学生对题目进行分析!这样,多数学生能从自己对问题的理解出发,一个问题接一个问题去思考!调动了学生学习的兴趣!
《三角形内角和》的教学设计4
教学目标:
1.引导学生实验发现三角形内角和是180°。
2.学会应用三角形内角和的知识解决实际问题。
3.发挥学生的主体性,培养学生小组合作、探究学习的能力。
教学重点:理解掌握三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180°。
教学准备:量角器、锐角(直角、钝角)三角形、剪刀。
教学流程:
常规口算。(小老师组织学生口算练习,教师小结,引出课题。)
(设计意图:课前口算练习增强了学生的口算意识,进而提高了学生的计算能力,为笔算奠定良好的基础。)
一、引导自学
小老师组织学生读学习目标和自学提示。
(一)学习目标
1.能实验发现三角形内角和是180°。
2.学会应用三角形内角和的知识解决实际问题。
(二)自学提示
1.想一想,什么是三角形的内角和内角和?(三角形相邻两条边的夹角叫做三角形的内角,三角形三个内角的度数和叫做三角形的内角和。)
2.动手量一量、折一折、拼一拼、剪一剪、摆一摆,验证三角形的内角和是多少。
3.质疑、解疑、存疑。(学生自学时,个人发现问题先小组内解决,如果小组内解决不了再全班交流解决。)
(学习时间5分钟,学习方式采用独学、对学、组学,小组学习由小组长组织。要求学生做好课堂笔记,展示时由小组长分工。)
(三)学生自主合作学习
师:下面请同学们自学看书,在自学时可以动笔画一画、记一记,做好分工,整理成条。(学习时间为5分钟,学习方式采用独学、对学和组学,要求学生做好自学笔记,组长关注学困生。教师巡视,关注学生的学习状况,把控学习时间。)
(点评:小老师精彩的组织能力给课堂增添了一道亮丽的风景线,学习目标简单、明了、易懂,自学提示的设计简洁又不失针对性,突出重点。教学过程重在培养学生主动探索、动手操作的能力,发展学生的空间观念和逻辑思维能力。)
二、指导展示
学生展示学习成果。(要求学生注意倾听,准备补充修正和评价)以小组为单位,对自学提示中的问题逐一展示交流预设:
1.量一量
生:我代表xx组来展示学习成果。我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。
师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你们觉得这个小组的方法怎样?(抽生评价)这种方法可能出现误差吗?为什么?(生回答)
师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?
2.折一折
生:我代表xx组来展示学习成果,我邀请xx同学和我一起完成这个任务。我们是通过折一折的方法得出结论的(边说边演示),我们将直角三角形的两个锐角折向直角,三个顶点重合,发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我们得出结论:直角三角形的内角和是180°。同样我们也验证了锐角、钝角三角形的'内角和也是180°。
3.拼一拼
生:我代表xx组来展示学习成果。我们发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以长方形的内角和是 360°,再除以2,得到直角三角形的内角和是180°。
4.剪一剪,摆一摆
生:我代表xx组来展示学习成果。我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明三角形的内角和是180°。
生质疑:同学们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?
生解答:因为三角形按角分可以分为三类:钝角三角形、直角三角形和锐角三角形,所以可以得出“三角形的内角和是180°”的结论。
师:说得真好,我们掌声鼓励。刚才同学们用不同的方法推出三角形的内角和是180°,让我们带着成功的语气大声读出“三角形的内角和是180°”。
(点评:指导展示环节充分发挥了小组长的领导能力,分工明确,充分展示了学生的创新能力和实践能力。把学习的时间还给学生,成功地开展小组合作学习,使学生在数学的海洋遨游,展开思维的翅膀,用不同的方法对三角形的内角和是180°进行了验证,有效地培养了学生的发散思维能力。)
三、辅导检测
1.课堂练习
2.达标检测
《三角形内角和》的教学设计5
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的.内角和。(板书课题:三角形的内角和)
二、合件交流,操作发现。
1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。
2.组织学生小组合作:
请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)
三、实践应用,拓展延伸。
1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。
2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
《三角形内角和》的教学设计6
教学目标:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生合作交流的能力,体验学习数学的快乐。
教学过程:
教学设想
学生活动
备注
一、 创设情境
1、故事导入
有一天,两个三角形吵了起来,大三角形说自己的个头大,所以内角比小三角形大。可小三角形说别看自己个头小,但角却不小。他们争得不可开交,始终争论不出结果。到底谁的内角大,谁的内角小,请大家帮忙想个办法,好吗?
生:可以用三角板量一量每个内角的度数,也就求出三角形内角的和,就知道谁大谁小了。
这节课,我们就来研究三角形的内角和。
二、合作交流
量一量
(1)师:同学们,你们的书上有许多三角形,现在就请你们选择喜欢的`三角形,到小组里量出每个角的度数。再计算出三角形内角的和,并填好小组活动记录表。
(2)各小组汇报记录结果,并说说有什么发现?
生:每个三角形的三个内角和接近180度。
师:三角形的内角和就是180度。接近180度的是在测量过程中出现了一点小的误差。
(3)除了用测量的方法能计算出三角形的内角和等于180度外,还有许多好的方法呢!
撕一撕
引导学生把一个三角形的三个角撕一下,拼一拼。
折一折
自己试着折一折,也会发现利用折一折,可以知道三角形内角和是180度。
师小结:刚才,同学们用量、撕、折的方法知道了三角形内角和是180度,现在你们可以告诉这两个三角形不要吵了,它们的内角是一样大的。
算一算
这两个三角形很感谢同学们,你们看,它们的好朋友也来了,它们只知道自己两个角的度数,你们能帮它们算出另外一个角的度数吗?
尝试:阅读与思考第1、2题
反馈交流
三、巩固练习
完成练习与应用第1、2题
小组活动开始
小组活动记录表第()组
《三角形内角和》的教学设计7
教学内容:
四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:
1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:
让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:
探究和验证“三角形内角和等于180°”。
教学准备:
学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:
一、创设情境,产生疑问
1、理解内角和含义。
2、故事激趣
提问:三兄弟围绕什么问题在争吵?你有什么看法?
二、自主学习,合作探究
1、提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?
指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2、进行验证。
(1)验证教师提供的三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?
拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?
②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?
解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证
出来不是1800的吗?
提问:你又能得到什么结论?还有怀疑吗?
3、得出结论。
指出:三角形有无穷多,课上得到的`还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。
说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。
解决争吵:学生用三角形内角和的知识劝解三兄弟。
三、巩固应用,深刻感悟
1、算一算:求三角形中未知角的度数。
2、拼一拼:用两块相同的三角尺拼成一个三角形。
思考:拼成的三角形内角和是多少?
3、画一画:(1)你能画出一个有两个锐角的三角形吗?
(2)你能画出一个有两个直角的三角形吗?
(3)你能画出一个有两个钝角的三角形吗?
四、全课总结,课后延伸
1、学生自主总结一节课的收获。
2、介绍帕斯卡。
3、用三角形拼成四边形、五边形、六边形,引发新的问题。
《三角形内角和》的教学设计8
教学内容:
北师版小学数学四年级下册《探索与发现(一)—三角形内角和》
教材分析:
《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。
学情分析:
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。
教学目标:
1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。
2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学重点:
让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。
教学难点:
掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:
表格、课件。
学具准备:
各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、复习
提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?
生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。
2、引入
三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。
播放课件,提问:它们在争论什么?
什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?
学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
(二)探索与发现
1、初步探索,提出猜想。
(1)量一量
①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②、小组合作。
③、汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在1800,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
2、动手操作,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)
引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)、小组合作,讨论验证方法。
(2)分组汇报,讨论质疑
学生可能会出现的方法:
A、撕拼的方法
把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。
讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
B、折一折的方法
把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
C提问:还有没有其它的'方法?
3、回顾两种方法,归纳总结,得出结论。
(1)课件演示:两种方法的展示。
(2)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生一定会高兴地喊:“1800!
(3)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
(4)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800
(三)、回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800,。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°— 90°—30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°— 75°— 28°
3、小法官:数学书29页第二题
4、拓展创新
A D G
B C E F H R
ABC的内角和是()
DEF的内角和是()
GHR的内角和呢?
小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
三角形内角和等于1800。
猜想验证得出结论应用
《三角形内角和》的教学设计9
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
设计意图:也自然导入新课。
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
设计意图:《标准》指出:“教师应激发学生的.积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
《三角形内角和》的教学设计10
一、教材内容分析
三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索。实验。发现。验证三角形内角和是180度。
二、教学目标(知识,技能,情感态度、价值观)
知识于技能:让学生通过亲自动手量。剪。拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。
过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想
情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。
三、学习者特征分析
学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的'动手操作能力和主动探究能力。因此概念的形成是通过量。算。拼等活动,让学生探索。实验。发现。讨论。推理。归纳出三角形的内角和是180度。
四、教学策略选择与设计
1。关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。
2。从学生已有的知识和生活经验出发,让学生通过操作。观察。思考。交流。推理。归等活动,培养学生的学习兴趣,体验数学的价值。
五、教学环境及资源准备
教具准备;多媒体课件。一副三角板。
学具准备:量角器。各种三角形。剪刀等。
《三角形内角和》的教学设计11
一、教学目标
1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。
2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。
3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。
二、教学过程
(一)创设情境,导入新课
1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?
(学生畅所欲言。)
2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!
师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,
3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)
(二)自主探究,发现规律
1、认识什么是三角形的内角和。
师:你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让学生想一想、说一说怎样才能知道三角形的内角和?
学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)
②小组合作。
通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。
引导学生推测出三角形的内角和可能都是180°。
3、验证推测。
让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,教师参与其中。)
4、全班交流,共同发现规律。
当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。
学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)
5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
(三)巩固练习,拓展应用
根据发现的三角形的新知识来解决问题。
1、完成“试一试”
让学生独立完成后,集体交流。
2、游戏:选度数,组三角形。
请选出三个角的度数来组成一个三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。
3、“想想做做”第1题
生独立完成,集体订正,并说说解题方法。
4、“想想做做”第2题
提问:为什么两个三角形拼成一个三角形后,内角和还是180度?
5、“想想做做”第3题
生动手折折看,填空。
提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?
6、“想想做做”第5题
生独立完成,说说不同的解题方法。
7、“想想做做”第6题
学生说说自己的想法。
8、思考题
教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导
出四边形的内角和公式吗?
(四)课堂总结
本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。
三教后反思:
“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求出第三个角的度数。
本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。
(一)创设情景,激发兴趣
俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的.导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。
(二)给学生空间,让他们自主探究
“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。
(三)以学定教,注重教学的有效性
新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。<
《三角形内角和》的教学设计12
教学目标:
1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。
2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。
3、能运用三角形内角和知识解决一些简单的问题。
教学重点:
探索和发现“三角形内角和是180°”。
教学难点:
验证“三角形内角和是180°,以及对这一知识的灵活运用。”
教具准备:
三角形,多媒体课中。
教学过程设计:
一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?
二、探究新知:
(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。
你们发现三角形的`内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°
(二)、拼一拼
引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?
引导学生得出:三角形内角和等于180°
(三)折一折
引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。
回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。
三、巩固拓展
1、填一填
①直角形三角形的两个锐角和是()度。
②直角三角形的一个锐角是45°,另一个锐角是()度。
③钝角三角形的两上内角分别是20°,60°;则第三个角是()
2、火眼金晴
①钝角三角形的两个钝角和大于90°()。
②直角三角形的两个锐角之和正好等于90°()。
③淘气画了一个三个角分别是50°,70°,50°的三角形()
④两个锐角是60°的三角形是等边三角形()
⑤长方形的内角和等于360°()。
3、猜一猜:四边形的内角和是多少度?
五边形的内角和是多少度?
四、小结,今天学习了什么?你有什么收获?
《三角形内角和》的教学设计13
知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。
情感态度与价值观
3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。
教学重点:
1、探索和发现三角形三个内角和的度数和等于180o。
2、已知三角形的两个角的度数,会求出第三个角的度数。
教学难点:
已知三角形的两个角的度数,会求出第三个角的度数。
方法与过程
教法:主动探究法、实验操作法。
学法:小组合作交流法
教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。
教学课时:1课时
教学过程
一、预习检查
说一说在预习课中操作的'感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。
二、情景导入呈现目标
故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。
三、探究新知
自主学习
1、活动一、比一比2、活动二、量一量
(1)什么是内角?
(2)如何得到一个三角形的内角和?
(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。
(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。
3、说一说,做一做。
(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。
(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。
四、当堂训练(小黑板出示内容)
1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。
2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。
3、三角形具有()性。
4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。
5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。
6、交流学案第三题。 先独立做,最后组内交流。
五、点拨升华
任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。
六、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
七、拓展提高
妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。
板书设计:
三角形的内角和
测量三个角的度数求和:结论:
教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。
《三角形内角和》的教学设计14
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的`和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
《三角形内角和》的教学设计15
教材内容:
北师大版义务教育课程标准实验教材四年级下册。
教学目标:
1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180°。在实验活动中,体验探索的过程和方法。
2、掌握三角形内角和是180°这一性质,并能应用这一性质解决一些简单的问题。
3、经历探究过程,发展推理能力,感受数学的逻辑美。
教学难点、重点:经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和规律。
教具准备:直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。
学具准备:直角三角形、锐角三角形、钝角三角形各3个。
教学设计意图:
“三角形的内角和180°”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。
教学过程:
活动一:设疑激趣
师:我们已经认识了三角形,关于三角形你知道了什么?
生1:三角形有3条边、3个角。
生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。
生3:每种三角形都至少有两个锐角。
师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。
师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?
生1:我试着画过,画不出来。
生2:因为每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。
生3:三角形的内角和是180°,两个直角的和已经是180°,所以不可能。
师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180°”的?
生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180°”我是从书上看到的。
师:你验证过了吗?
生:没有。
师:三角形的内角和是不是180°?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。
设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180°,两个直角的和已是180°,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180°”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180°”就成了学生急切需要探究的问题。
活动二:自主探究
师:请同学们拿出课前准备的'材料,自己想办法验证三角形的内角和是不是180。?
学生动手操作验证。
师:请大家静静地思考1分钟,将刚才的实验过程在脑中梳理一下。现在请把自己的研究过程、结果跟大家交流一下。
生1:我是用量角器测量的,我量的是直角三角形:
90。+ 42。+47。=179。
生2:我量的也是直角三角形:
90。+43。+48。=181。
生3:我量的是锐角三角形:
32。+65。+83。=180。
生4:我量的是钝角三角形:
120。+32。+30。=182。
生5:……
师:看到这些度量结果,你有什么想法?
生1:为什么他们测量的结果会不相同?
生2:也许我们测量的方法不精确。
生3:也许我们的量角器不标准。
生4:也可能三角形的内角和不一定都是180°。
师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180°左右。
师:有没有没使用量角器来验证的呢?
生:我是用三个相同的三角形来接的(如图)。∠1、∠2、∠3刚好拼成一个平角,所以三角形的内角和是180°。
师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?
生1:用量角器测量不就知道了吗?
生2:用三角板的两个直角去拼来验证。
生3:因为平角的两条边成一条直线,所以可用直尺来检验。
生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。
师:通过刚才的验证,可以说明∠1、∠2、∠3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?
生:我是将锐角三角形的三个角分别撕下来,拼成一个平角,平角是180°所以锐角三角形的内角和是180°。
师:直角三角形、钝角三角形行吗?来试一试。
生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。
师:大家就用折拼的方法试一试。
学生操作验证。
师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?
生:都是将三角形的三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180°。
师:通过上面的实验,你 可以得出什么结论?
生:三角形的内角和是180。
师:是任意三角形吗?刚才我们才验证了几个三角形呀?怎么就可以说是任意三角形呢?
生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。
师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?
生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。
师生小结:三角形不论形状、大小,它的内角和总是180。
设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多样性。促进了学生发散思维能力的提高,提升了思维品质。
活动三:应用拓展
1、计算下面各个三角形中的∠B的度数。
师:(图2)怎样求∠B?
生:180。-90。-55。=35。
师:还有不同的解法吗?
生:180。÷2-55。=35。,因为三角形的内角和是180。,其中一个直角是90。,另外两个锐角的和刚好是90。
师:是不是任意一个直角三角形的两锐角和都是90。呢?能验证一下吗?
生:因为任意三角形的内角和是180。,其中一个直角是90。,所以其他两个锐角的和肯定是90。
师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?
生:直角三角形的两个锐角和是90。
2、一个等腰三角形顶角是90。,两个底角分别是多少度?
3、等边三角形的每个内角是多少度?
师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?
生:略。
师:通过这节课的学习,你还有什么疑问或还想研究什么问题?
生:三角形有内角和,三角形有外角和吗?
师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。
课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。
【《三角形内角和》的教学设计】相关文章:
三角形内角和教学设计04-12
《三角形的内角和》教学设计07-20
三角形内角和教学设计03-09
《三角形的内角和》教学设计03-14
《三角形内角和》教学设计04-07
三角形的内角和的教学设计07-24
三角形的内角和教学设计03-01
《三角形内角和》教学设计07-31
《三角形的内角和》教学设计[热门]02-19
《三角形内角和》的教学设计通用04-22