- 《圆的面积》的教学设计 推荐度:
- 圆的面积教学设计 推荐度:
- 圆的面积教学设计 推荐度:
- 圆的面积教学设计 推荐度:
- 圆的面积教学设计 推荐度:
- 相关推荐
《圆的面积》教学设计范例(15篇)
作为一名优秀的教育工作者,编写教学设计是必不可少的,教学设计是对学业业绩问题的解决措施进行策划的过程。我们应该怎么写教学设计呢?下面是小编整理的《圆的面积》教学设计,欢迎阅读与收藏。
《圆的面积》教学设计1
一、教材分析
本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习关于平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。
二、学情分析
学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的'面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。
三、教学目标
知识与技能:
1.理解圆的面积的概念。
2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。
四、过程与方法:
经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。
五、情感态度价值观:
感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
六、教学重点和难点
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。
教学难点:
理解圆的面积公式的推导过程。
七、教学准备:
圆片、课件。
《圆的面积》教学设计2
教学内容:
义务教育课程标准实验教科书六年级上册P67-68
教学目标:
1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。
2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。
3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:掌握圆的面积计算公式,能够正确地计算圆的面积。
教学难点:理解圆的面积计算公式的推导。
教学过程:
一、回忆旧知、揭示课题
1、谈话引入
前些日子我们已经研究了圆,今天咱们继续研究圆。
2、画圆
首先请同学们拿出你们的圆规在练习本上画一个圆。
3、比较圆的大小
请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的.圆小一些?看来圆的大小与什么有关?
4、揭示课题
我们把圆所占平面的大小叫做圆的面积。(出示课题)
二、动手操作,探索新知
1、确定策略,体会转化
(1)明确研究问题
师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。
(2)体会转化
怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)
其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?
预设:
学生回忆平行四边形、三角形、梯形的面积推导方法。
当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)
三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)
小结:
你们有没有发现这些方法都有一个共同点?
(3)确定策略
那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)
如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?
①引导学生说出沿着直径或半径,把圆进行平均分;
②师示范4等份、8等份的剪法和拼法;
2、明确方法,体验极限
(1)学生动手操作16等份的拼法;
(2)比较每一次所拼图形的变化;
(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。
3、深化思维,推导公式
(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)
(2)交流发现,电脑演示圆周长和长,半径和宽的关系。
(3)多让几个学生交流转化后的长方形和原来圆之间的联系。
(4)根据长方形的面积公式推导圆的面积计算公式。
三、运用公式,解决问题
1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?
出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?
2、判断对错:
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。()
3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?
四、总结新知,深化拓展
1.小结:
通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。
2、拓展
在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)
那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。
《圆的面积》教学设计3
“圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基础本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
本节课分四个环节来设计教学。
第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。
第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。
(一)公式的推导
1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。
2.推导圆面积公式
第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?
第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。
第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的.哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。
3.小结
让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。
4.阶段性练习
a.看标有半径的圆,求面积。
b.已知半径求面积。(练习时交待运算顺序。)
(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。
第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。
第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
《圆的面积》教学设计4
一、激趣导入
1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。
2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积
3、看到这个课题,你想知道些什么?
(帮助学生明确这节课的学习目标:
(1)了解什么是圆的面积;
(2)了解与哪些因素有关;
(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。)
二、实践导学
(一)认识圆的面积
1、什么叫圆的'面积。
2、小组讨论
3、圆的大小主要与哪些因素有关?
((1)半径;(2)直径;(3)周长。)
(二)回忆平行四边形面积公式推导过程
1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)
2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?
3、小组讨论
(三)操作探究
1、转化圆形推导公式
(1)、让学生拿出卡纸
(1),观察卡纸
(1)上的圆被等分成多少分,圆被转化成什么图形?
(2)、让学生拿出卡纸
(2),观察卡纸
(2)上的圆被等分成多少分,圆又被转化成什么图形?
(3)、教师课件展示圆被平均分成16等份后转化的图形。
(4)、观察比较,你有什么发现?
2、引导学生观察比较,推导圆面积计算公式。
⑴、将圆通过剪拼,可以转化成已经学过的什么图形?
⑵、新的图形与原来的圆有什么联系?
⑶、试推导圆的面积公式。(课件展示)
长方形的面积=长×宽
圆的面积=c÷2×r=2πr÷2×r=πr2
s=πr2
三、练习巩固
1、运用公式学习例
学生试做,说根据,总结强调。
2、完成基本练习(做一做)
四、拓展提高
1、解决“小羊吃草”问题
《圆的面积》教学设计5
教学内容浙教版小学数学第十一册教材P141—143、例1
教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。
学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。
教学目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能够利用圆面积公式进行计算。
3.培养学生动手操作、观察分析、概括推理的能力。
教学重点圆面积计算公式的推导和利用公式进行正确计算。
教学难点极限思想的渗透与圆面积公式的推导过程。
教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等
教学过程
一、创设情境
1.播放录像:美丽的校园景色、各种形状的花坛。
问:你能计算出它们的占地面积吗?
2.媒体演示(从各种形状的花坛中提炼出下面的图形)。
(1)学生说出这些图形的面积计算公式。
(2)用什么方法推导出三角形面积计算公式的?
教师板书:
剪拼
要学的图形 已学的图形
转化
3.媒体出示圆形。
今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)
(板书课题:圆的面积)
二、公式推导
1.提出问题,制定方案
(1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?
(2)小组汇报:
a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。
b.面临的`困难:如何曲线变直线。
2.操作实验,分析问题
(1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。
(2)交流汇报。
①学生汇报剪拼过程,同时教师贴示。
②观察思考(教师有意选取一组剪拼成长方形的来交流)
a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?
b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?
(教师媒体演示)
c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?
d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?
3.推导公式,解决问题
(1)观察讨论
当圆转化成近似长方形时,你们发现它们之间有什么联系?
(2)学生填实验报告。
(3)学生交流汇报推导过程。
(4)观看课件演示过程,并请同桌两位同学互说一次。
三、公式应用
1.简介千古绝技:中国古代数学家的割圆术。
公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……
2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。
3.根据下面所给的条件,求圆的面积。
(1)直径10厘米(2)周长12。56
(生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)
四、课堂总结
1.这节课你学会了什么?
2.这节课你有什么感受?
五、课外拓展
1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?
2.已知正方形的面积是25平方厘米,求圆的面积。如图:
3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)
板书设计
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
(周长的一半)
剪拼
要学的图形 已学的图形
转化
《圆的面积》教学设计6
教学内容:
冀教版六年级上册第四单元
教学目标:
1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。
2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。
3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。
4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。
教学重点:
在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。
教学难点:
能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的'结果。提高分析问题和解决问题的能力。
教学流程:
一、炫我两分钟
大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即
同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。
出示口算题目。
随机评价。
相信我们都是有智慧有思想的人,我要为你们点赞(动作)。
二、组内交流,完善梳理
教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。
【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】
三、小组合作交流。
组内交流尝试小研究。
出示小组合作交流建议:
1、组长组织本组成员有序进行交流。
2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。
3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。
4、再次确认发言顺序,准备全班交流。
【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】
四、班级交流,提升梳理
1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。
2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。
【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】
3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。
师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。
【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】
五、应用拓展
结合练习做相应题目,巩固易错易混知识。
(一)基础题
1、判断下面各题是否正确,对的打“√”,错的打“×”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
2、一个圆的周长是25、12米,它的面积是多少?
3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?
(二)拓展提高
1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?
2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?
3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?
【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】
六、个人整理
经过本课时的学习,你有哪些收获呢?
【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】
《圆的面积》教学设计7
教学内容: 圆的面积 教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:
一、谈话引入
明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)
导入课题:圆的面积
二、引导探究
1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?
(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?
(2)猜测圆的面积与半径有什么关系?
正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……
2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。
A、长方形、正方形,直接用面积单位去量,找规律得到的;
B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。
(2)统一认识,寻求转化的方法
A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;
B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。
(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形
同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。
长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)
长方形的面积 = 长 × 宽
圆的面积 = 圆周长一半( r)×半径(r)
S = π r2 B、拼成近似的三角形
三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2
B、圆的面积与什么有关?回到课始的猜测。
三、总结
本节课你有什么收获?
四、实践
1、已知r=4cm,求S。
2、已知d=8cm,求S。
板书设计:
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
《 圆的面积》教学反思
济渎路 翟彩艳
圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不同
本课开始,我先让学生比较圆的`周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地
参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。
《圆的面积》教学设计8
一、教学内容
北京市义务教育课程改革实验数学教材第11册二、教学目标:
1、知识与技能:
使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。
2、过程与方法:
引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。
3、情感态度价值观:
培养学生认真观察、深入思考,积极合作的良好品质。
三、教学重点:
通过合作探究活动,推导出圆面积公式。
四、教学难点:
理解转化后的图形各部分与圆各部分的关系。
五、教具学具准备:
圆形纸片多媒体
六、教学过程:
(一)情境导入
出示:圆桌照片
师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?
生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?
师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?
怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。
【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务】
(二)合作探究
1、复习转化方法:
师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)
师:我们以平行四边形为例,你还记得平行四边形面积公式的'推导过程吗?(指名说、师投影演示)
师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?
师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:
1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。
2、小组合作探究,师巡视,指导。
【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。
教师让学生带着3个问题进行自主探究的活动】
3、汇报展示
预设:
学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。
学生方法2:将圆等分成若干份,拼成一个梯形或三角形。
学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)
板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。
【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】
4、课件演示,体验极限、化曲为直等数学思想。
5、资料介绍,感受数学文化,师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)
生:一人板书,其他学生本上练习。集体订正。
6、知识性小结:
师:如果我们想计算圆的面积,必须知道什么条件?
生:半径。
师:还可以知道什么,也能求出圆的面积?
生:圆的直径或圆的周长?
师:怎么求?
【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。
教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】
(三)解决问题:
1、口算下面各圆的面积。
2、填写下表。
半径直径周长面积
2厘米
6厘米
6。28厘米
3、某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?
(四)全课总结
板书设计:圆的面积
转化平行四边形面积=底×高
联系圆的面积=×r=×r
=πr×r=πr2
公式S=πr2
《圆的面积》教学设计9
教学目标:
1.知识目标:经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2.能力目标:能正确运用圆的面积计算公式计算圆的面积
3. 情感目标:体会转化的数学思想方法,初步感受极限的思想。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、复习导入
1.提问:长方形的面积是什么?圆的面积是什么?
复习学过的图形面积公式,圆的面积该怎样计算?
3.引入:今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
二、探究新知
1.教学例7。
(1)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?
(3)实验验证:
出示例7第一幅图。思考:
①你准备怎样数?与同学交流。
②图中正方形的面积和圆的半径有什么关系?
估计一下圆的面积大约是正方形面积的几倍。
(4)指导完成第一幅图的计算和填空。
同桌合作,按照同样的方法进行计算并填表
2.交流归纳:观察上面的表格,你有什么发现?
小结:圆的面积是半径平方的3倍多一些。
3.教学例8。
(1)谈话:以前我们是怎样推导出平行四边形的面积呢?那么圆能不能转化成学过的图形?
(2)操作体验:把117页上半部分剪下来,按16等份剪开,再拼一拼,看看能什么图形。
(3)提问:拼成的图形像什么图形?(拼成了一个近似的平行四边形。)
(4)初步想象:如果把圆平均分成32份,也用类似的`方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
教师演示后进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什图形?(长方形)
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽
是圆的半径:长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,得出圆的面积公式。(教师板书)
(9)追问:知道圆的什么条件,就可以根据圆的面积公式计算圆的面积了?
(10)完成练一练。
4.教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转喷水器?
(2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。
(3)学生独立完成计算。
(4)指导算术方法和代入法两种方法的注意事项。
三、课堂小结
通过今天的学习,你有什么收获?
四、布置作业
完成练习十五第1、3、4题。
《圆的面积》教学设计10
【教学目标】
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的'其它图形,开始吧!
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,谁能首先告诉老师,这个长方形的宽是多少?
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
二、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。
三、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
四、课堂作业。
《圆的面积》教学设计11
教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:
知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。
能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。
情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:掌握并理解圆面积的计算公式。
教学难点:引导学生用多种方法推导概括圆面积公式。
教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。
教学过程:
一、创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
二、回顾旧知,孕优新知
在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)
以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。
三、研究新知,加深理解
1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)
出示自学提纲:
(1)什么叫圆的面积?
(2)书上是怎样推导圆面积的?
(3)为什么是近似的平行四边形?
2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。
出示小组合作学习提纲:(指生读)
(1)你摆的是什么图形?
(2)你摆的图形的面积与圆的面积有什么关系?
(3)所摆图形的各部分相当于圆的什么?
(4)你是如何推导出圆的面积的?圆的面积公式是什么?
(5)你能不能转化成其它图形推导圆面积公式?
(你想把圆转化成什么图形)
3、哪个小组愿意把你们的研究成果给大家展示一下?
请大家关注同学们的发言,从中你一定会受到启发或发现问题。
小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)
4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)
如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?
好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)
(2)如果给出直径你会算吗?出示例1。(指生读题)
四、巩固深化,实际应用
(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。
(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)
(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?
(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?
五、发散思维,拓展知识
小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?
六、总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
圆面积教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的
自主探究创造条件。
1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的`方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实
《圆的面积》教学设计12
教学目的
1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
教学重点:圆面积计算
教学难点:公式以及推导。
教学过程
一、复习并引入课题。
1.口算:2π 9.42÷π 12.56÷π
2.已知圆的半径是2.5分米,它的周长是多少?
3.一个长方形的长是6.2米,宽是4米,它的面积是多少?
4.说出平行四边形的面积公式是怎样推导出来的?
5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?
课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
二、新课讲授
1.圆的面积的含义。
问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的面积公式的推导。
问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)
问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)
教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
强调:如果分的等份越多所拼的图形就越接近长方形。
问题:拼成的长方形的`长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)
引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?
学生独立完成圆面积公式的推导:
总结:我们用S表示圆的面积,那么圆面积的大小就是:
再次强调:
(1)拼成的图形近似于什么图形?
(2)原来圆的面积与这个长方形的面积是否相等?
(3)长方形的长相当于圆的哪部分的长?
(4)长方形的宽是圆的哪部分?
(5)用S表示圆的面积,那么圆的面积可以写成:S=πr
2 3.圆面积公式的应用。
师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?
学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?
(学生独立完成,教师巡视,对有困难的学生给予辅导。)
教师板演计算过程。
出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?
问题:你能利用内圆好外圆的面积求出环形的面积吗?
学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)
三、巩固练习。
1.根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。
(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
(2)强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。
四、课堂小结
总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!
另外,我们在前面也学习了如何求圆的周长,需要注意的是:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。
(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积
长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr
教学反思
圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:
一、从圆的周长到圆的面积体验其中不同
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。
四、引导学生主动参与知识的形成过程。
五、存在和改进的地方有:
1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
《圆的面积》教学设计13
教学目标:
1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。
3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。
教学重难点:
圆面积公式的推导。
教学关键:
弄清圆与转化后的近似图形之间的关系。
教具:
多媒体计算机。
学具:
每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。
教学过程:
一、复习旧知、设疑导入
同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!
微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。
二、动手操作、探索新知
1、通过度量,猜想圆面积的大小。
用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。
初步猜想:圆的面积相当于r2的3倍多一些。
3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。
2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
3、学生小组合作。
(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:
①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)
②圆和近似的长方形有什么关系?(形状变了,但面积相等)
③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。
④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)
⑤你能推导出圆面积计算公式吗?
(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。
(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的.正确。说明在求圆的面积时,都要知道半径。
三、看书质疑、自学例3,注意书写格式和运算顺序
四、运用新知,解决问题
1、一个圆的半径是5厘米,它的面积是多少平方厘米?
2、看图计算圆的面积。
3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?
4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
五、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
六、布置作业
七、板书设计
圆的面积
长方形的面积=长×宽圆的面积=周长的一半×半径
S=πr×r;S=πr2
《圆的面积》教学设计14
一、教材分析
《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
三、教学目标(课件)
(1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。
(2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。
教学难点:是圆面积计算公式的推导和极限思想的渗透;
四、学情分析
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:
1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。
2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
五、教学过程
本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的求知欲,让学生在生动具体的'情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
(课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
第一层:基本性练习
1、求下面各个圆的面积。(课件出示)
(1)半径为3分米;
(2)直径为10米。
(3)周长为13厘米。
第二层:综合性练习
2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?
第三层:发展性练习
3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?
4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。
(1)这个龙头最多可喷灌多大面积的草坪?
(2)喷灌后至少可剩下的面积有多大?
六、评价和反思
这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。
《圆的面积》教学设计15
教学内容分析:
圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。
学生情况分析:
小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
教学目标:
1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
教具:多媒体课件、面积转化教具。
学具:书、计算器、16等份教具、作业纸。
教学过程:
一、创设情境、揭示课题
1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?
(复习圆的相关特征)
师:那马最多能吃多大面积的草呢?
师:圆所围成的平面的大小就叫做圆的面积。
师:今天我们继续来研究圆的面积。(揭示课题)
2、师:你想研究它的哪些问题呢?(引导学生提出疑问)
【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、猜想验证、初步感知
1、实验验证
(1)师:猜一猜,圆的面积可能会和它的什么有关系?
师:你觉得圆的面积大约是正方形的几倍?
(2)师:对我们的估计需要进行?
生:验证。
师:用什么方法验证呢?
师:下面请大家先数数圆的面积是多少。
师:数起来感觉怎么样?有没有更简洁一点的方法?
(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)
(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)
圆的半径
(cm)
圆的面积
(cm2)
圆的面积
(cm2)
正方形的面积
(cm2)
圆的面积大约是正方形面积的几倍
(精确到十分位)
(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)
(学生完成后交流汇报。)
师:仔细观察表中的数据,你有什么发现?
生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。
3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?
生:圆的面积是它半径平方的3倍多一些。
小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。
【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】
三、实验操作、推导公式
1、感受转化,渗透方法
(课件再次出示马吃草图)
师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?
(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)
2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?
(学生回忆后汇报,教师演示,激活转化思路)
3、第一轮探究——明确思路,体会转化
师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?
生:剪圆。
师:怎么剪呢?沿着什么剪?
生:沿着直径或半径剪开。
(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)
4、第二轮探究——明确方法,体验极限
师:刚才我们将圆分别剪成4等份、8等份再拼成新的`图形是想干什么呀?
生:想把圆形转化成平行四边形。
师:那还能更像吗?
生:可以将圆片平均分成16份。
(引导学生把16、32等份的圆拼成近似的长方形,上台展示)
师:从哪儿可以看出这两幅图更接平行四边形了?
生:边更直了。
师:是什么方法使得边越来越直了?
生:平均分的份数越来越多。
(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)
师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。
【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】
(2)师:我们把圆转化成了长方形,什么变了,什么没变?
生:形状变了,面积大小没有变。
师:这样就把圆的面积转化成了?
生:长方形的面积。
师:要求圆的面积,只要求出?
生:长方形的面积。
5、第3轮探究——深化思维,推导公式
师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。
(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)
师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)
(通过长方形面积计算方法,引出圆的面积计算方法)
师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?
生:π倍。
师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。
生:半径。
5、做“练一练”
完成作业纸第3题,交流反馈。
6、(课件再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】
四、解决问题、拓展应用
1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(课件出示例9)
分析题意后学生独立完成书本第105页例9。
(组织交流,评价反馈)
2、完成作业纸第4题
师:接着看,默读题目,完成作业纸第3题。
(学生独立完成,交流反馈)
五、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
板书设计:
圆的面积
转化
新的图形学过的图形
演示图
长方形的面积=长×宽
圆的面积=圆周长的一半 × 半径
S=πr×r
=πr2
(1)3.14×22(2)8÷2=4(cm)
=3.14×43.14×42
=12.56(cm2)=3.14×16
=50.24(cm2)
【《圆的面积》教学设计】相关文章:
圆的面积教学设计 圆的面积教学设计优秀07-20
圆的面积的教学设计09-29
圆的面积教学设计05-12
圆的面积教学设计04-04
《圆的面积》教学设计02-07
《圆的面积》教学设计05-19
《圆的面积》优秀教学设计05-19
[精品]《圆的面积》教学设计01-21
[推荐]圆的面积教学设计08-18
圆的面积教学设计新版08-12