《对称图形》教案

时间:2022-09-09 16:48:18 教案 投诉 投稿
  • 相关推荐

《对称图形》教案

  作为一名教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?下面是小编整理的《对称图形》教案,欢迎阅读,希望大家能够喜欢。

《对称图形》教案

《对称图形》教案1

  优秀教案片段:

  (师利用多媒体课件出示一些轴对称图形)

  师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?

  生:这些图形的两边都一样。

  生:这些图形都是对称的。

  师:你们想自身动手做一个漂亮的对称图形吗?

  生:想。

  师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。

  设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。

  (剪图形活动结束)

  师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。

  生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)

  师:请一位小朋友说一说你做的是什么图形?你是怎么做的?

  生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。

  师:你知道利用工具来做,真不简单,还有谁愿意说?

  生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。

  师:为什么要先把一张纸对折?

  生:因为假如不对折,剪出的图形两边就不一样大了。

  (仍有同学手高高举起)

  师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?

  设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。

  师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?

  生:对折后,两边的图形重合了。

  师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?

  生:不一样。

  师:哪些地方不一样?

  生:(指着老师手中的枫叶图形)

  这个图形对折后两边的图形不一样大,一边大,一边小。

  老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。

  师:(趁机问)你们手中的图形对折后,是怎样重合的?

  生:全部重合完了。

  师:有没有多出来的局部?

  生:没有。

  师:有没有缺少的局部?

  生:没有。

  师:(指着同学的图形)这种重合就叫做完全重合。

  师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。

  设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。

  师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?

  生:(中间有1条线)

  师:这条线是怎么得来的?

  生:刚才我们对折的时候留下来的'折痕。

  师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?

  生:对折的。

  师:假如我们不沿着这条直线对折会怎么样?

  生:两边的图形就不能完全重合了。

  师:这说明这条线怎么样?

  生:很重要。

  师:你能给这条线取个名字吗?

  生:中间线。

  师:为什么把它叫做中间线?说说你的理由好吗?

  生:因为这条线在这个图形的正中间,所以我把它叫做中间线。

  师:还有谁想说?

  生:对折线,因为这条线是我们对折后留下来的。

  生:重合线,因为沿着这条线对折两边的图形就完全重合了。

  师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?

  (课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)

  设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。

《对称图形》教案2

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的.能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

《对称图形》教案3

  知识目标:

  (1)使学生理解轴对称的概念;

  (2)了解轴对称的性质及其应用;

  (3)知道轴对称图形与轴对称的区别.

  能力目标:

  (1)通过轴对称和轴对称图形的学习,提高学生的观察辨析图形的能力和画图能力;

  (2)通过实际问题的练习,提高学生解决实际问题的能力.

  情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过轴对称图形的学习,体现数学中的美,感受数学中的美.

  教学重点

  轴对称和轴对称图形的概念,轴对称的性质及判定

  教学难点

  区分轴对称和轴对称图形的概念

  教学用具:直尺,微机

  教学方法:观察实验

  教学过程

  1、概念:(阅读教材,回答问题)

  (1)对称轴

  (2)轴对称

  (3)轴对称图形

  学生动手实验,说明上述概念.最后总结轴对称及轴对称图形这两个概念的区别:

  轴对称涉及两个图形,是两个图形的位置关系.轴对称图形只是针对一个图形而言.

  轴对称和轴对称图形都有对称轴,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线对称.

  2、定理的获得

  (投影):观察轴对称的两个图形是否为全等形

  定理1:关于某条直线对称的两个图形是全等形

  由此得出:

  定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.

  启发学生,写出此定理的逆命题,并判断是否为真命题?由此得到:

  逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

  学生继续观察得到

  定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

  说明:上述定理2可以看成是轴对称图形的性质定理,逆定理则是判定定理.

  上述问题的获得,都是由定理1引发、变换、延伸得到的'.教师应充分抓住这次机会,培养学生变式问题的研究.

  2、常见的轴对称图形

  图形

  对称轴

  点A

  过点A的任意直线

  直线m

  直线m,m的垂线

  线段AB

  直线AB,线段AB的中垂线

  角

  角平分线所在的直线

  等腰三角形

  底边上的中线

  3、应用

  例1如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.

  分析:按照轴对称的概念,只要分别过A、B、C向直线MN作垂线,并将垂线段延长一倍即可得到点A、B、C关于直线MN的对称点,连结所得到的这三个点.

  作法:(1)作AD⊥MN于D,延长AD至A1使A1D=AD,

  得点A的对称点A1

  (2)同法作点B、C关于MN的对称点B1、、C1

  (3)顺次连结A1、B1、C1

  ∴△A1B1C1即为所求

  例2如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,

  且AC=BD,若A到河岸CD的中点的距离为500cm.问:

  (1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?

  (2)最短路程是多少?

  解:问题可转化为已知直线CD和CD同侧两点A、B,

  在CD上作一点M,使AM+BM最小,

  先作点A关于CD的对称点A1,

  再连结A1B,交CD于点M,

  则点M为所求的点.

  证明:(1)在CD上任取一点M1,连结A1 M1、A M1

  B M1、AM

  ∵直线CD是A、A1的对称轴,M、M1在CD上

  ∴AM=A1M,AM1=A1M1

  ∴AM+BM=AM1+BM=A1B

  在△A1 M1B中

  ∵A1 M1+BM1>AM+BN即AM+BM最小

  (2)由(1)可得AM=AM1,A1C=AC=BD

  ∴△A1CM≌△BDM

  ∴A1M=BM,CM=DM

  即M为CD中点,且A1B=2AM

  ∵AM=500m

  ∴最简路程A1B=AM+BM=2AM=1000m

  例3已知:如图,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE

  求证:CE=DE

  证明:延长BD至F,使DF=BC,连结EF

  ∵AE=BD,△ABC为等边三角形

  ∴BF=BE,∠B=

  ∴△BEF为等边三角形

  ∴△BEC≌△FED

  ∴CE=DE

  5、课堂小结:

  (1)轴对称和轴对称图形的区别和联系

  区别:轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;轴对称涉及两个图形,轴对称图形只对一个图形而言

  联系:这两个定义中都涉及一条直线,都沿其折叠而能够重合;二者都具有相对性:即若把轴对称图形沿轴一分为二,则这两个图形就关于原轴成轴对称,反之,把两个成轴对称的图形全二为一,则它就是一个轴对称图形.

  (2)解题方法:一是如何画关于某条直线的对称图形(找对称点)

  二是关于实际应用问题“求最短路程”.

  6、布置作业:

  书面作业P120#6、8、9

  板书设计

  探究活动

  两个全等的三角板,可以拼出各种不同的图形,如图已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分成不同的轴对称图形(所画三角形可与原三角形有重叠部分)

  解:

《对称图形》教案4

  教学设想:

  “对称”是义务教育课程标准实验教科书数学(人教版)二年级上册第五单元<观察物体>第二课时的内容,主要教学”轴对称”的知识,数学教案-美丽的轴对称图形。整节课,设计了五个大的活动。让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。

  第一个活动是让学生动手剪剪,在剪一剪中体验对称图形的特点,对对称、对称图形有一个直观的了解。

  第二个活动,设计的是让学生“找一找”,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。

  第三个活动是让学生动手画一画对称轴,进一步理解对称及对称图形的特点,接着,出示正方形、长方形、和五角星,让学生找对称轴,由于可找很多条对称轴,让学生感悟到同一个物体有不同的对称轴,感觉到对称的奥妙.

  第四个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。

  第五个活动,是对学生学习的课外延伸,让学生设计一个对称图形,打扮我们的教室,充分调动了学生的积极性,发挥了他们的想象力。

  整节课的设计,遵循了以下原则:

  一、 遵循儿童的认知规律。

  皮亚杰的儿童智力开发阶段理论认为:小学生主要处于具体运算阶段,形式运算能力较差,也就是说形象思维活跃,逻辑思维较弱。因此,对于对称的概念及特点,我是从直观的,而且是学生自己动手操作所发现的,也顺应了现代教学观念,学生只有在亲身经历或体验一种学习过程时,其聪明才智得以发挥出来,任何一种学习都是一种积极主动的建构过程。

  二、体现数学的生活化原则

  数学 ,来源于生活,又用于生活。小学生所学的数学都是生活中数学的抽象。为了更好地让学生学习数学,理解数学,应用数学。采用以生活为源,给学生创造条件。学生学习的材料是生活中常见的;学生剪的窗花是用于装饰环境的;欣赏的内容也是生活中常见的,小学数学教案《数学教案-美丽的轴对称图形》。体现了一种观念,数学与生活是密切联系的。

  目标:

  1、通过剪一剪的实际操作,体会到轴对称图形的主要特点。

  2、在认识轴对称图形的.基础上,能正确判断哪些是轴对称图形,哪些不是轴对称图形,并找到对称轴。

  3、通过剪、画说找的实际操作,培养学生的观察、分析、综合、抽象和空间想象能力。

  4、通过对实物及相关图片的欣赏,感受到数学与现实生活的密切联系,感受对称美。

  课前准备:每生准备二张彩纸,剪刀

  教学过程:

  一、猜图形。

  1、出示一组轴对称的图形,请同学猜一猜,完整的是什么?

  2、说说你为什么这样猜?

  3、揭示答案。看你猜得对不对,谜底马上揭晓。

  4、看这些图,你发现了什么?有什么特点。

  了解轴对称图形的一般特点,对称轴的两边完全一样。

  理解对称轴及对称图形的含义。

  5、假如要判断一张纸是否是轴对称图形,你怎么判断?

  二、找一找,画一画。

  1、请你归归类。

  小组讨论:哪些是哪些不是,为什么?

  2、小组反馈交流。

  三、欣赏。

  1、你能带着今天学的知识来欣赏吗?

  2、欣赏完了,你想说什么?

  四、找生活中的对称。

  1、其实生活中也有很多对称的图形、物体,你能说一说吗?

  2、马老师发现这样一个现象,你能帮马老师解释一下吗?课件出示倒影的图片。

  五、剪一剪。

  1、想设计一些对称图形吗?来打扮我们的教室。

  想一想,打算怎么剪?

  2、学生动手剪。

  3、学生贴窗花。(学生自己的作品。)

《对称图形》教案5

  〖教学目标

  1.通过观察、操作活动、认识对称图形,体会对称图形的特征。

  2.逐步培养主动探究和应用知识的能力,发展空间观念。

  3.结合图案、物体的欣赏,培养审美情趣,培养想像力。

  〖教材分析

  本课是学生学习空间与图形知识的基础,这部分内容对于帮助学生建立空间观念,培养学生的空间想像力有着重要的作用。对称是现实世界中普遍存在的一种现象,这一课时的内容是认识对称图形,让学生通过观察、探索、动手操作,了解“对称”“对称轴”等概念,并且初步体会对称图形的性质。

  〖学校及学生状况分析

  我校地处市中心,学生大多数来自于各方面条件相对优越的家庭,家庭给孩子创造的学习机会也比较多。学生的知识背景良好,具有较为丰富的生活经验。我校1年加入课改试验,三年级学生是我校第一批参与课改实验的学生。他们年龄小,好动,好奇,思维活跃,感性认识强于理性认识;形象而直观的教学容易被他们所接受。

  〖教学设计

  (一)激趣引入:猜图游戏

  师:我这儿有几张漂亮的图片想要作为礼物送,待会儿我们玩一个猜图游戏。我出示图片的一半,谁先猜出完整的图片是什么,我们就把图片送给他,好吗?

  (将一幅完整的对称图形对折后出示给学生,让学生观察到原图形的一半,并结合生活经验猜完整的图是什么。)

  (二)自主探究:剪花瓶图

  1.出其不意

  最后一次猜图游戏,出示教材第12页花瓶图的一半,让学生猜。

  师:这是什么?(学生能够回答出这是一个花瓶。)

  师:是不是花瓶呢?我们一一看。(图展开后就只是半个花瓶,打破原有定式思维,学生很诧异。)

  2.提出问题

  师:大家想一想,另一半的形状、大小应该是什么样呢?你们能想办法把这个完整的花瓶剪出来吗?

  3.探索发现

  (1)师:先想一想该怎样剪,想好了再动手。

  (每人一份学具:半个花瓶图。让学生动手尝试剪出两边形状、大小完全一样的花瓶。)

  (2)小组交流剪花瓶的方法。

  (3)展示作品,比较各种剪花瓶的方法。

  (4)发现:通过各种方法的比较,发现用对折剪的方法,就能剪出两边形状、大小完全相同的图形。

  4.实践认识

  (1)实践――尝试对折剪法。

  师:我们都用对折的方法剪一剪图2,看看是什么好吗?

  (2)认识――观察比较揭示概念:“对称图形”“对称轴”。

  师:同学们观察一下看,刚才我们用对折的方法剪出来的这些图形都有什么特点呢?(学生观察,发现折痕的两边都是一样的。)

  师:像这样的图形就叫做“对称图形”;而这条折痕就叫“对称轴”,对称轴用虚线表示。(教师示范画出对称轴。)

  (3)画出前面剪好的对称图形的对称轴。

  5.归纳巩固

  师:大家再观察一下我们前面猜图游戏中的这些图形,你发现了什么?(它们对折后两边都是一样的。)

  师:因此,我们说这些图形也都属于“对称图形”。(揭示课题)

  (三)应用拓展

  1.判断对称图形。

  2.根据给出的对称轴将对称图形补充完整,体会:对称轴的位置不同,画出来的对称图形可能就不一样。

  3.寻找生活中的`对称现象。

  师:请同学们说说生活中还有什么是对称的?

  (欣赏录像,发现生活中的对称,体会对称在生活中的作用;观察雪花图,小组讨论其是否对称。)

  师:在不对称中蕴含着对称,其实也是一种美。生活中还有很多不对称的图形,它们也是很美的。

  (四)课外延伸――寻找五角星有几条对称轴

  师:老师给每一位同学都送一份礼物。这份礼物,蕴藏着一些小秘密,课后大家仔细观察,看看这颗聪明星有多少条对称轴呢?同学们可以讨论一下。

  (五)全课

  1.这节课你有什么收获?

  2.对称的知识在生活中应用十分广泛,只要大家留心观察,一定会有更多的发现。

  〖教学反思

  很多学生在幼儿园和小学二年级的剪纸课上,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立 “对称”的概念是我这节课要达成的重要目标之一。因此,我设计“在猜图游戏中出现半个花瓶,激发学生想办法剪出一个完整的花瓶”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称” 的概念有更清晰的认识,也为其在生活中如何判断对称现象方法。

  〖案例点评

  本课教学活动有以下特点。

  1.通过游戏活动,激发学生的学习兴趣和探究欲望。

  开课伊始开展猜图游戏,用精美的图片吸引学生的注意,引起学生的好奇。整个游戏既富有童趣又有挑战性,尤其是最后出现的半个花瓶,激发了学生探究的热情。

  2.在积极主动的学习活动中,数学交流的学习环境,培养学生的探究能力。

  本节课,教师自始至终都让学生在愉快、生动活泼的氛围中认识对称图形,课堂上开展了观察发现、操作探索、欣赏运用等一系列积极主动的学习活动。例如:先独立尝试探究对称图形的剪法,然后小组交流讨论方法,最后又在观察讨论中揭示对称的概念,整个过程将观察、思考、操作有机结合,让学生充分感知对称图形的性质,树立学习的信心,获得成功的体验。

  3.联系生活实际,创造欣赏数学美的条件,让学生体验数学的价值。

  教师抓住对称图形特有的美感,设计了师生共同欣赏生活中的对称图形的活动,在优美的音乐声中,课件动态演示生活中的对称图形,给学生带来美的享受;同时,由一幅特殊的工艺品图,让学生发现不对称中又蕴含着对称,其实也是一种美。通过这些活动,使学生学会欣赏数学美,体验数学的价值。

《对称图形》教案6

  一、教学目标:

  1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

  2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

  二、教学重、难点:

  理解中心对称图形的概念及其基本性质。

  三、教学过程:

  (一)创设问题情境

  1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

  【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

  (课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

  师重复以上活动

  2次后提问:

  (1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

  (2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

  (反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

  (2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(

  3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

  2.教师揭示谜底。

  利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转

  180O后和原来牌面一样。

  3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

  (1)只有一张扑克牌图案颠倒后和原来牌面一样。

  (2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。

  (反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)

  (二)学生分组讨论、思考探究:

  1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

  生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

  2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “

  Z+Z”演示其旋转过程。)3

  .有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

  (对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、 “动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

  (三)教师明晰,建立模型

  1给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2.对比轴对称图形与中心对称图形:(列出表格,加深印象)

  轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转1880O对折后与原图形重合

  旋转后与原图形重合

  (四)解释、应用与拓广

  1.教师用“Z+Z

  智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

  (利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

  2.探究中心对称图形的'性质

  板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

  3.师问:怎样找出一个中心对称图形的对称中心?

  (两组对应点连结所成线段的交点)

  4平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

  学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

  5逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

  学生讨论回答。

  6你还能找出哪些多边形是中心对称图形?

  (反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

  (五)拓展与延伸

  1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

  2.正六边形的对称中心怎样确定?

  (六)魔术表演:

  1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?

  2.学生小组活动:

  以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

  (新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

  四、案例小结

  《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

  现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

《对称图形》教案7

  教学内容:

  教材28-29页例1及做一做,练习七1-3题

  教学目标:

  1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

  2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。

  教学重点:

  认识轴对称图形的基本特征。

  教学难点:

  能判断出轴对称图形。

  教学教法:

  观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。

  教学过程:

  一、欣赏图片,建立表象

  出示教材第28页单元主题图。

  谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)

  小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。

  二、互动新授

  1、小组合作,探究对称。

  教师点击蜻蜓风筝和蝴蝶风筝的图形。

  谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的.语言说。)

  教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为对称,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)

  师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。

  学生自主交流。

  谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)

  2、教学对称

  师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为对称,这些物体就是对称现象。

《对称图形》教案8

  教学目标

  1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。

  2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

  3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。

  教学准备

  教师:多媒体教学等。

  学生:白纸、彩纸、剪刀、颜料、钉子板等学习材料一份。

  教学过程

  一、“玩”对称,谈话激趣

  课前交流:从“玩”这一话题引入,结合师生的撕纸作品,自然引入新课学习,激发学生的兴趣。

  (今天有这么多老师来听课,我有点担心。同学们你们知道老师担心什么吗?其实老师是担心我们六(1)班的同学不会“玩”。你们会不会玩?老师这有一张白纸,说一说你会玩什么? 想知道我会怎么玩这张纸呢?先把这张纸对折,然后从折痕的地方任意的撕下一块。虽然任意,但撕得还是挺认真的。你们会不会像老师这样玩呢?每人都有机会,不妨请大家也来玩一玩。)二、“识”对称,体悟特征

  (谁愿意把自己的作品给大家展示一下?

  如果我们把这些看做一个个图形的话,这些图形的大小?形状?但是你们有没有发现这些图形有一个共同的地方?

  板书:轴对称图形

  刚才同学们给这些图形一个名称,关于他们的特点我们还有待于深入的研究。这些图形除了左右两边一样外,试想一下,如果把这些图形的左右两边对折的话会出现什么样的情形呢?我想了解一下你手中的作品有没有这样的特点?请同学们自己试着折一折。

  既然这样的图形对折以后左右两边都重合,那么这样的图形用“轴对称图形”这个名称合适不合适?为什么合适?说说你的理由。1. 结合学生的撕纸作品,2. 引导学生进行观察、比较、概括,3.抽象出这类平面图形的特点。

  在此基础上,引导学生结合图形的特征(对折后,折痕两侧完全重叠),师生共同揭示轴对称图形的概念。

  4. 从“轴”字出发,5. 引导学生认识轴对称图形的对称轴,6. 并通过说一说、指7. 一指8. 、画一画,9.深入认识对称轴,10. 体会“对称轴是折痕所在的直线”这一内涵,11. 并再次感受轴对称图形的特征。

  (折痕所在的这条直线就是对称轴。对称轴通常用点画线来表示。在自己的作品上也画上一条对称轴。对折以后,折痕的两边能完全重合的图形,就叫做轴对称图形。你们能不能很快的说出哪些是轴对称图形)

  12. 结合轴对称图形的特征,13. 判断下列图形是否为轴对称图形。

  学生根据经验大胆猜想。

  结合手中的学具,小组合作,共同验证猜想。

  大组进行交流,着重引导学生说清判断的依据。

  引导学生理解一般三角形的“非对称性”及等腰(边)三角形的“对称性”,并由此类推到梯形、平行四边形等。

  根据活动经验,判断如下三个图形的对称轴的条数。

  4.判断国旗中的图案是否是轴对称的。

  交流时,引导学生说说判断的依据。

  5.判断交通标志中的图案是否是轴对称的。

  写下正确的图案标志的序号。

  交流:剩下的图案为什么不是轴对称的。

  6.想象:根据给出的轴对称图形的左半边,想象它的另一半,并判断给出的是什么图案。

  三、“做”对称,深化体验

  引导学生结合轴对称图形的特点,利用师生共同准备的一些素材,自己想办法创造一个轴对称图形。

  交流时,着重引导学生说清创作过程,并给予激励性评价。

  教师相机进行相关资源的分享。

  四、“赏”对称,提升认识

  由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的.美妙与神奇,并进一步拓宽学生的视野,受到美的洗礼。

  轴对称图形

  张齐华出一张纸。

  如果是你的话,怎么玩?

  生:我们折飞机

  生:我会折青蛙,

  生:我们折出星星

  生:我会把这张纸剪成窗花。

  师:先把纸对折,然后从折痕的地方,撕下一块。会玩吗?大家玩一玩。

  学生撕纸

  在黑板上展示学生的作品

  师:如果我们这些纸看作一个个图形的话?大家看一看这些图形大小?(不一样),你们有没有发现共同的地方?

  生:左右两边都相同。

  生:我认为它们轴对称图形的

  师:你是怎么知道的这个词儿的?

  生:我是从书上看到的。

  板书课题。

  师:在深入的观察,左右大小就是一样的吗?

  生:我认为形状也是一样的

  生:我认为面积也是一样的。

  生:我认为把它叠在一起的,会重合。

  师:你手中的作品有没有这样的特点。

  学生动手试一试。

  师:现在

《对称图形》教案9

  《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。

  一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的'对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。

  二、创设自主学习的条件 苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本

  本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。

  三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。

  总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。

《对称图形》教案10

  《 轴对称图形 》教学设计

  教学内容:

  北师大版义务教育课程标准实验教科书《数学》三年级下册第二单元第13—15页《轴对称图形》

  教学目标:

  1. 通过生活中的事例,使学生初步体会什么是轴对称图形。

  2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

  3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意

  识和实践能力。

  教学重点:

  1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

  2. 能正确判断轴对称图形。

  教学难点:画出轴对称图形。

  教学准备:课件剪刀 彩色卡纸 平行四边形纸

  一、 情境导入

  1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。

  课件出示不对称“脸图”问:“这张脸可爱吗?”

  生:不可爱!

  课件演示脸图由不对称变为对称,问:现在呢?

  生:可爱!

  师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。

  2.图片欣赏 (课件出示对称图形图片)

  看完图片后师问:这些图片中的图形有什么特点?(指名回答)

  学生可能会说,它们两边完全一样。

  教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)

  二、 探究新知

  1.认识轴对称图形

  师:在我们的生活中,还有很多事物都是对称的。

  看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)

  生:想!

  师:老师和你们来一场比赛,看谁剪的又快又好,开始!

  师生同时动手剪,完成后教师把自己剪的贴在黑板上。

  请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。(指导学生演示方法)

  问演示学生:你怎么让大家知道你剪的小松树是对称的呢?

  生:我把它对折(生边说边演示)(师板书:对折)

  师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?

  生:左右两边完全重合(师板书:完全重合)

  师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。(出示概念,补充课题:轴对称

  图形)

  生齐读概念

  2.认识对称轴

  师:把你们的对称图形打开,观察图形中间有什么?

  生:有一条直直的折痕。

  师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)

  出示感念,生齐读。

  师演示并带领学生画对称轴(强调用虚线)

  我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!

  三、 实际应用

  1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)

  生应用所学知识判断,教师点评。

  师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?

  生动手画对称轴,师巡视指导,完成后订正。

  师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?

  2.找出下列图形中的轴对称图形(课件出示课本14页第1题)

  生找出轴对称图形,并说说每个图形的对称轴在哪儿。

  师:聪明的'同学们能找轴对称图形,聪明的你们会画轴对称图形吗?

  3.出示课本14页第3题

  师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。

  生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。 师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)

  4.下面哪些图形中的红线是对称轴?

  师:看来同学们已经知道了很多轴对称图形,

  (出示导课时的“脸图”可爱

  的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?

  生找身边的轴对称事物。

  四、全课小结

  我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学

  们谈谈通过这节课的学学习,你有什么收获?

  生:畅谈收获。

  师:你们想知道老师有什么收获吗?(想)

  老师今天收获了一份愉快的心情!

  板书设计:

  完全

  轴对称图形 对称轴 重合

《对称图形》教案11

  教学目标:

  1、通过拼剪对称图形,找画对称轴的过程,感知轴对称的特征;经过观察、操作、体会,初步认识轴对称现象,

  2、通过学生活动,发展学生的空间观念,培养学生观察能力和动手操作能力,感受对称、

  匀称、均衡的美感,体会身边处处有数学。

  3、培养学生的合作意识,让学生在合作中交流、学习、互动。

  教学重点:

  感知对称现象的特征并能正确判断物体是否具有对称现象。

  教学难点:

  能找到对称物体的对称轴

  教具准备:

  多媒体课件、剪纸图形3张、长方形、正方形、圆形纸、尺子、剪刀、彩纸等。

  学具准备:

  长方形、正方形、圆形纸各1、剪刀、尺子、彩纸若干。

  教学过程:

  一、故事激趣,引入新课

  师:老师知道同学们都很聪明又特别爱发言,今天就奖励你们,让你们听一个小故事。想听吗?(想)

  师:好吧,那就让我们一起去看这个童话故事吧。灯片1(故事)

  二、探究新知

  1、观察对称图形

  (1)师:故事里有一个奇怪问题?为什么小蝴蝶说在图形王国里它们三个是一家的呢?

  灯片2(为什么小蝴蝶说在图形王国里它们三个是一家的?)

  师:这节课我们就来研究这个问题。它们是一家吗?可是小蝴蝶却说在图形王国里它们三个是一家的。请小朋友们仔细观察他们每一个图形自己的左边和右边,(边指每个图边说)你发现了什么?

  师和生一起小结:两个翅膀的颜色是一样的、大小也是一样的、里面的图案也是一样的。

  (2)师:请小朋友们想一想,如果我们把这3个图形分别对折起来,会发生什么情况呢?

  师:来,请你说……

  生:两边对折起来,两边就会成一模一样了。

  师:还有谁来说说,对折起来的话,会发生什么情况?

  生:只有一半图形了。

  师:那就是说,对折以后,每个图形的左边和右边完全重合了,所以你看起来就好像只有一半了。

  师:那么我们班的小朋友想得对吗?让我们一起来看一看。

  (3)演示对折的过程

  灯片3(对折过程)师:跟我们想的一样吗?(一样)

  2、认识对称图形

  (1)师:如果我们把一个图形对折以后,他们的左边和右边就完全重合了,我们把这样的图形叫对称图形。(边说边演示再板书)灯片4(对称的概念)

  (2)举出对称图形的实例

  师:对称的东西还有很多,很多。比如:我们穿的衣服、用的剪刀、戴的眼镜……这些东西也是对称的(拿出实物给大家看)。

  师:小朋友们你们认识了奇妙的对称了吗?你们能不能找找在你的身边比如我们的教室里,家里等有没有发现过这些奇妙的对称的东西呢?想到了和你的同桌说说吧……

  师:哪位小朋友愿意站起来,大声和全班小朋友说说你的发现?(边说边引导评价)

  3、认识对称轴

  (1)出示剪出的对称图形

  师:小朋友们真聪明,在我们的生活中找到了那么多的对称。老师啊还用纸剪了几个对称图形呢。你们能猜出我剪的是什么吗?

  师拿着半个纸1:这个是什么啊?(飞机)

  师:对了,是飞机。(展开并贴上)它是对称图形吗?你怎么知道它是对称图形的呢?

  生:因为它对折以后两边完全重合了。

  师:再看看这个是什么啊?(鱼)

  师:最后一个呢?(乌龟)

  师:那么同学们来观察一下,这3个图形是不是对称的?(边问边指黑板上)(是)

  (2)剪对称图形

  师:看着老师剪出了这些对称图形,小朋友们也肯定想自己试一试。是不是?(是)

  师:那我问问你们能不能剪出来啊?(能)

  师:那么前后几个同学互相商量商量,如果给你一张纸,你们怎样才能剪出一个对称图形来啊?

  师:好,开始,大家说一说。(学生讨论)

  师:谁愿意告诉大家,怎样才能剪出一个对称图形?

  生:先把纸对折……(叫1——2名说)

  师:同学们觉得他们的方法行不行啊?(行)

  师:其实啊这张纸对折以后,画好你要剪的图形的一半,(边说边演示)再用剪刀按你画的线路剪几下,我们就能得到对称图形,看看这是什么啊?(衣服)

  师:请问你想剪什么?(我想剪一棵树)

  师:可以的。你会先把纸……再用笔画树的……最后用剪刀……行,你照自己说的去试试。看能不能剪出一个对称的小树。(多叫几个同学说说)(注意要求别的同学倾听他人的发言,并要有评价)

  师:先把纸对折,查看更多文章请访问小学课堂网再画半个图形,最后用剪刀仔细的剪出来,我们就能得到自己喜欢的对称图形。

  师:那好,请小朋友们拿出纸,想好你要剪的对称图形,在音乐声中完成自己的作品(边放音乐),看谁剪得又快又漂亮。(师下去指导并请同学贴到黑板上)

  (3)认识对称轴

  师:同学们用自己的双手创造出了这么多的对称图形。老师从心里为你们喝彩。

  师:虽然我们剪出的图形各不相同,但是每一个对称图形的中间都有一条什么啊?(线)

  师:对了,应该给这条直线起个什么名字呢?(对称线、对折线、中线……)

  师:其实呀它早就有自己的名字啦,它就叫对称轴!

  (4)找对称轴

  师:看老师是怎样画对称轴的:因为对称轴是一条直线,所以画的时候就用上画图工具,一手按住尺子,另一只手握笔沿着尺子画一条虚的直线。这根虚线就叫做——(对称轴)

  师:我们已经知道什么是对称轴了,那么你知道蜻蜓、树叶、蝴蝶的对称轴在哪儿吗?(学生边说边在灯片上演示)

  灯片4(蜻蜓、树叶、蝴蝶的对称轴)

  5、欣赏生活中的对称图形

  师:通过刚才的学习,我们已经认识了对称,知道了对称轴!

  师:其实啊生活中好多东西都是对称的。下面啊就请小朋友们和老师一起去欣赏我们生活中的对称图形。

  灯片5(共5张)(生活中的对称图形)

  师:这些对称图形美吗?事实上我们大家都是——(对称的)请一名学生上来指指人的对称轴在哪儿?

  师:你们能不能做几个对称的动作姿势?请你跟着老师一起做几个对称的动作。……

  三、知识拓展

  (1)找出对称图形,并指出它们的对称轴

  师:好,看来生活中的对称图形还真多呢。老师这里还有几样东西,同学们来找一找这些东西里哪些是对称的?

  灯片5(共2张)

  出示第2张:

  师:五角星、叉子、球拍、知了这4样东西是对称的,那我问问同学们你知不知道它们的对称轴都在什么地方呢?

  师:叉子、球拍、知了还有别的对称轴吗?想一想,五角星的对称轴除了这一条,还有没有呢?(得出5条,学生边说教师边用实物对折,然后灯片演示。)

  灯片5(画对称轴)

  师:观察五角星五条对称轴的方向,你发现了什么?

  生:我发现它的对称轴还有斜的。……

  师:对,你观察得真仔细。一个对称图形的对称轴有的是竖的,有的是横的,还有的是斜的。

  (2)找出小鱼、乌龟的对称轴

  师:老师要问问同学们了,黑板上的小鱼的对称轴在什么地方?哪位勇敢者上来画一画?你问问同学:我画得对吗?

  师:看来啊,我们生活中好多图形都是对称的,而且每个对称图形都有对称轴呢。

  (3)找、画出长方形、正方形、圆形的对称轴

  师:小蝴蝶又带我们来到了图形王国,它们都是对称图形,这些老朋友就在你的桌子上。请同桌的同学互相交流交流,边折边说说长方形、正方形、圆形各有几条对称轴。

  师:哪位同学愿意向全班交流,你找到了长方形的几条对称轴?正方形呢?圆形呢?还有不同的吗?……

  师生一起小结:长方形有2条对称轴、正方形有4条对称轴、圆的对称轴有很多条。

  灯片6(平面图形)

  学生动手折后,师问:这些图形中的老朋友们是不是对称的?(是)

  师:那么他们的对称轴,能找到吗?请同桌小朋友互相找找,说说你们的发现!并用不同色的笔画出对称轴来。再把学生的作品放到展台展示,并讨论……

  师:是对称图形就一定有对称轴。谁来说说一个对称图形最少有几条对称轴?最多有几条对称轴?

  生:一个对称图形最少有一条对称轴,最多有无数条对称轴。

  师:能举例说说吗?

  生:比如小蝴蝶的对称轴就只有一条,圆的对称轴有好多好多条。

  四、全课小结

  师:通过这节课的学习,我们知道为什么小蝴蝶说在图形王国里它们三个是一家的了,为什么呢?(因为它们都是对称图形)对称图形不只奇怪而且非常奇妙,给我们的人类创造出了美丽,还带来了许许多多的好处呢!只要我们做个有心人,就会发现越来越多的东西是对称的,最后让我们再一次感受对称的美吧!

  灯片7在(对称图形)的欣赏图片中结束本课。

  教学反思:

  1、为了让学生积极主动地感兴致的学习,首先用童话故事导入,引出一组对称图形,让学生去观察图形的特点,说出图形左边和右边相同,左右之分是以图形中间那条直线为界线,为讲解对称图形的知识打下基础。然后,通过提问:为什么它们三个是一家的?让学生广泛讨论,动手折叠,使学生了解了这些图形的`特点:“沿一条直线对折,两侧的图形能够完全重合。”这只是感性认识,为了使学生进一步理解什么是对称图形,设计了让学生很快剪出一个具有这些特点的简单图形。这个环节虽然对部分同学感到困难,但是通过互相启发还是能做出来的,达到强化这类图形特点的目的,就能水到渠成地突破教学重点。这样设计教案体现了以学生为主体,通过让学生动手拼、画、折、剪、量、比等方法,引导学生主动探索,启发调动了学生全部心理活动的积极性,使情感、意志、兴趣、注意、动机都趋于积极化,使学习知识和提高能力同步得到发展。

  2.黑格尔说:“审美带有令人解放的性质”。一切事物倘能与美相接便立即会焕发出动人的光彩,引得主体跃跃欲试,产生追求的强烈愿望,这正是美的神奇力量之所在。“对称”既是数学概念,又是美学的一个重要概念。在现实生活中,常常可以看到对称美。从学生的学习的心理过程来看,认知过程与审美情感本身就是深刻地渗透在一起的。学生对知识的掌握理解以及由知识到智力的转化都需要借助情感媒介而实现,而审美情感正是知识向智力转化的最有效的动力。本节课采用多媒体制作精美的课件,让学生一目了然的看到物体的对折,真切地感知到对称图形的特点;选择美丽的对称图案配上优美的音乐,让学生陶醉美感中,学生边看边发出一种赞美的声音。加入美感的教学,使课堂变得活跃而有味,从而促使学生发自内心的想自己动手创作出一幅自己喜欢的对称图形来,激发其创新的动机。

  3.只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

  4.学生能自己解决的问题,最大限度的让学生自己去解决;学生在解决过程中遇到困难时教师要引导着去解决

《对称图形》教案12

  一、教学目标

  (一)知识与技能

  会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。

  (二)过程与方法

  通过观察、操作等活动,能在方格纸上补全一个轴对称图形。

  (三)情感态度和价值观

  让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。

  二、教学重难点

  教学重点:掌握画图的方法和步骤。

  教学难点:能在方格纸上画出轴对称图形的另一半。

  三、教学准备

  方格纸、课件。

  四、教学过程

  (一)复习导入

  教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?

  预设:对应点到对称轴的距离相等。

  (二)探索新知

  1.画出轴对称图形。

  教师:根据对称轴,补全下面的轴对称图形。

  教师:要想顺利的画出另外一半的'图形,你有什么办法呢?根据是什么?

  (小组讨论,全班交流)

  预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。

  教师:很好,怎样来找点呢,所有的点都找吗?

  预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。

  教师:谁能来展示一下你画出的轴对称图形的另一半?

  学生展示自己的作品。

  2.探究结果汇报。

  教师:同学们,今天我们学习了哪些知识?

  预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。

  教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?

  学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。

  设计意图

  引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。

《对称图形》教案13

  活动目标

  引导幼儿观察物体,找出对称图形,并画出与物体相对称的另一半。

  培养幼儿的多项思维能力及动手操作能力,培养幼儿对数学活动的兴趣。

  使小朋友们感到快乐、好玩,在不知不觉中应经学习了知识。

  重点难点

  1、认识对称现象,绘画对称图形。

  2、体会对称图形的特征,画出简单对称图形的另一半。

  活动准备

  有趣的对称图案,人手一张长和宽为4厘米和3厘米的彩色纸、剪刀、水彩笔。已拼插好一半对称图案的玩具或插粒若干套,玩具、插粒若干。 :三张对称图片:三角形,花朵,小鸟。

  活动过程

  一、猜一猜

  分别出示三张对称图片的一半,让幼儿猜出后面是什么。三张全出示后引导幼儿观察左右两过的异同:形状、颜色、图案相同,左右位置相反,感知理解对称的意义。

  二、找一找

  先出示若干半张图片,让其寻找对称的另一半。再在自己身上寻找对称的部位。

  三、做一做

  用自己的身体做对称的动作。

  四、画一画

  在操作纸上先找对称图案,再涂色对称图案,最后画对称图案的另一半。

  教学反思

  “猜一猜”是活动的.第一环节。而“猜”不是主要的,主要的是去“找”。我要让幼儿在快乐的“猜一猜”后,自己去寻找左右两边的异同点,这就是重点。在猜的过程中孩子们兴趣高涨,因为我对幼儿的猜测答案都没肯定也不否定,所以他们就特好奇,给下面的“寻找”增加了更大的兴趣。在我的鼓励下,他们都积极主动的寻找着每张图片两边的相同点与不同,最终自然的发现了“对称”的条件:形状、颜色、大小、图案相同,方向相反。然而就在让他们找不同点时,我提出了一个带有误导性的问题:“找一找两边有什么不一样”,因此幼儿就从细微之处找不同,还真的找到了线条不直、圆圈不圆之类,没有一个幼儿会从方向上去观察,我也就只能半提醒着他们“看看小鸟吧朝哪边”,幼儿才恍然大悟“方向相反”了。显然这是我的提问出现了问题而导致的。这环节让我满意的是话比较简洁不多,灵活的面对幼儿的“猜测”。让我遗憾的就是:问题设计不妥,带来了误导或多或少的耽误了教学活动的时间。

  “找一找”是对“对称”含义的理解后的初次应用。我就请班上学习、接受能力中偏下的幼儿回答,结果是多数幼儿对“对称”已理解,也能找到相同的另一半,但还有极少幼儿有些模糊而出现错误,因此就在他们的错误中提出问题并极时帮他们解决了问题,使幼儿更加理解了对称的意思。

  “做一做”是为了增加一点趣味性,前二个环节都是以说为主,而做一做即是让他们巩固“对称”的理解,又是能让他们好动的身体能得到轻松片刻。虽是动的一刻,但师幼配合非常默契。

  “画一画”的操作活动有看、想、找、涂色、画的过程,是前面学习的综合反映。在此中我觉得不足的是:在幼儿操作前没有再次或是小结一下对称条件,也没有示范, 因此很多幼儿出现了对称的颜色没有用上,他们只是涂色而已,如果能提一提,也许幼儿涂色时会主意到色彩的变化与对称。

  这就是我对“有趣图案”整个活动的全面反思,只有在仔细深入的反思中才能找到或者是接近有效完美的教学途径。

《对称图形》教案14

  教学目标

  1。 知道镜像对称图形的特点。

  2。 通过学生活动,正确体会镜像对称的相对性。

  3。 培养学生的合作意识,让学生在合作中交流、学习、互动。

  教学重难点

  体会镜像对称的相对性。

  教学具准备

  镜子、教科书第71页的开放题、卡片

  教学过程

  一、玩一玩镜子,创设情境

  1。小朋友们,今天这节课我们来玩一玩镜子,好吗?(每人一面小镜子)

  师:你在镜子里看到了什么?

  生:我看到了自己;我看到了书;我看到了黑板……

  师:这是怎么回事?

  二、引导探索,体验镜像对称的特点

  1。 出示教科书第69页的主题图,请学生仔细观察。

  (1)师:这幅图画中,怎么会出现两栋房子、六只天鹅?怎么岸上有树,水底也有树?

  (2)生:下面的房子、天鹅、树是水里的影子。

  师:(放大房子图)水上的房子和水下的房子是相同的吗?它们的方向怎样?

  生:样子相同,但方向相反。

  师:其实这也是数学知识,是一种镜面对称。(出示课题)

  2。 请学生用手中的镜子做游戏。

  (1)发给学生只有半边图象的卡片,请他们想办法猜出另半边图象是什么?(小组活动)

  小组汇报:用镜子照;把卡片对折……

  (2)用镜子照自己的`脸并做各种面部表情,同时观察镜子里的你面部表情的变化。

  (3)出示教科书中第69页的小朋友照镜子图(例3)

  师:这位小朋友在干什么?镜子里面的小朋友又在干什么?

  3。师说:“小朋友们,让我们来照照镜子吧,好吗?”出示三面穿衣镜,请学生在镜子面前表演各种动作,同时请学生说出镜子里面的自己动作是怎样的。(小组活动,教师参与其中。)

  生:我向前走一步,镜子里的我也向前走一步。

  镜子里的我左手拿笔,右手拿本子,镜子外面的我左本子,右手拿笔。

  我往左走,走镜子里的我往右走。

  学生任意做动作……

  三、运用拓展

  1。 判断。哪个是你在镜子里看到的样子?圈出来。(教科书第71页第5题)

  2。 找朋友。

  3。 思考题:第71页第1题、2题。

  (1)看镜子写数

  (2)看镜子写时间

  四、小结评价

  师:看,照镜子、水面倒影等等这些生活中的事就是数学知识,你知道了吗?

《对称图形》教案15

  一、教学内容:

  北师大版小学数学第六册P23-24的内容

  二、教材分析:

  轴对称是一种常见的平面图形,在生活中有着广泛的应用。本节课是在学生已经学习了一些平面图形的特征,形成了一定空间观念的基础上,再来学习轴对称图形的相关知识的。教材通过举例出示一些图形,让学生看一看来认识轴对称图形,再通过折一折,认一认和说一说,让学生发现轴对称图形的特征和找出轴对称图形的对称轴的方法。

  三、学情分析:

  “轴对称”对三年级的孩子来说比较常见,这是由于在实际生活体验中,学生见到、摸到、用到的很多东西都是轴对称的。在教学过程中,要让学生主动地操作、实践,并从中发现规律,总结出轴对称图形的特征,这样才能加深学生对轴对称图形的了解,提高学生解决实际问题的能力,并为今后学习平移、旋转、图形变换等知识打好基础。

  四、教学目标:

  1、通过观察和操作活动,让学生初步认识轴对称图形;

  2、使学生会直观判断轴对称图形,并能用对折的方法找出轴对称图形的`对称轴。

  3、在认识、欣赏轴对称图形的过程中,感受到物体或图形的对称美,培养积极健康的审美情趣。

  五、教学重点、难点:

  重、难点:掌握轴对称图形的特征,能准确识别轴对称图形并能找出轴对称图形的对称轴。

  六、教学过程:

  (一)“玩”对称,激趣引入

  1、游戏: 出示一张米奇的头像(缺少一只耳朵)。

  教师谈话:米奇缺失了一只耳朵,很不舒服。同学们,谁能帮米奇贴上耳朵呢?

  引导学生说出右耳应贴在与左耳对称的位置。

  2、出示主题图红心、小鱼、红双喜、房子、A字母。

  引导学生观察、比较:说一说它们有什么共同特征?

  【设计意图:从“贴耳朵游戏”引入,有利于让学生利用已有的生活经验进行判断,初步感知对称为新课的学习做了良好的铺垫。同时,通过游戏活动营造一种活跃的课堂气氛,诱发学生进一步探究新知的热情。】

  (二)“识”对称,感悟特征

  1、认识轴对称图形

  师提问:这些图形从中间分开,上下两边或左右两边完全一样。那怎么知道“两边一样”?

  学生进行动手操作,集体汇报。

  师根据学生的汇报总结:如果对折后两边能完全重合的图形,就是轴对称图形。

  揭示课题:今天我们就一起学习“轴对称”。(板书课题:轴对称(一))

  【设计意图:学生发表自己的看法,集体完善“轴对称图形”的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。】

  2、找轴对称图形的对称轴。

  (1)认识对称轴,能找轴对称图形的对称轴。

  师引导操作:把轴对称图形对折后展开,你发现了什么?

  (2)找对称轴

  找正方形,平行四边形,长方形,圆形的对称轴。

  【设计意图:从学生熟悉的图形入手,长方形、正方形、圆形都是轴对称图形,大家用对折的方法不仅验证了它们是否是对称图形,并且发现了有些轴对称图形还不止一条对称轴,】

  (三)“用”对称,加深理解

  1、辨析

  (1)完成教材第24页“练一练”第1题,第2题。

  2、那个纸飞机飞的平稳?为什么?

  3、猜一猜:下面的题目曾是英国剑桥大学的入学考试题目!接下来应该是什么形状?

  【设计意图:通过运用所学知识辨析轴对称图形、运用称图解决问题,有利于巩固新知。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边。】

  (四)“赏”对称,畅谈收获

  1、欣赏图片。

  播放生活中具有轴对称性质的图片

  2、畅谈收获。

  通过这节课的学习你有什么收获和感受。