《二次函数》教案15篇
作为一无名无私奉献的教育工作者,通常需要准备好一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?以下是小编为大家收集的《二次函数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《二次函数》教案1
一、教学目标
1.知识与技能目标:
⑴。使学生理解并掌握二次例函数的概念
⑵。能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式
⑶。能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想
2.过程与方法目标;
通过探究----感悟----练习,采用探究、讨论等方法进行。
3.情感态度与价值观:
通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育
二、教学重、难点
1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式
2.难点:理解二次例函数的概念。
三、教学过程
1、知识回顾
⑴。一元二次方程的`一般形式是什么?
⑵。回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的
2、合作学习,探索新知 :
问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,那么y与x的关系可表示为?
《二次函数》教案2
一、教材分析
本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析
本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标
(一)知识与能力目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;
2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标
通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;
2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点
1.重点
通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2.难点
二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与 设计说明
本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程
教学环节(注明每个环节预设的时间)
(一)提出问题(约1分钟)
教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?
学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)
教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。
学生活动:讨论解决
目的:激发兴趣
2.配方求解顶点坐标和对称轴(约5分钟)
教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。
学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。
目的:即加深对本课知识的认知有增强了配方法的应用意识。
3.画出该二次函数图像(约5分钟)
教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。
学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。
目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。
4.探究y=-2x2-4x+1的函数图像特点(约3分钟)
教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。
学生活动:学生独立完成。
目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。
5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)
教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。
学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。
目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。
6.简单应用(约11分钟)
教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。
教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。
学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。
目的:巩固新知
课堂小结(2分钟)
1. 本节课研究的内容是什么?研究的'过程中你遇到了哪些知识上的问题?
2. 你对本节课有什么感想或疑惑?
布置作业(1分钟)
1. 教科书习题22.1第6,7两题;
2. 《课时练》本节内容。
板书设计
提出问题 画函数图像 学生板演练习
例题配方过程
到顶点式的配方过程 一般式相关知识点
教学反思
在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
我认为优点主要包括:
1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3.板书字体端正,格式清晰明了,突出重点、难点。
4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。
所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:
1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;
2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;
3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。
《二次函数》教案3
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的.形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2. 看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法 例题
1.因式分解的定义
2.提公因式法
《二次函数》教案4
【基础过关】
1、用一根长10 的铁丝围成一个矩形,设其中的一边长为 ,矩形的面积为 ,则 与 的函数关系式为 .
2、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.求S与x之间的函数关系
3、小敏在某次投篮中,球的运动路线是抛物线 的
一部分(如图),若命中篮圈中心,则他与篮底的距离 是( )
4、小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
5、某商场以每台2500元进口一批彩电,如果每台售价定为2700元,可卖出400台,以100元为一个价格单位,若每台提高一个单位价格,则会少卖出50台。
⑴若设每台的定价为 (元)卖出这批彩电获得的利润为 (元),试写出 与 的函数关系式;
⑵当定价为多少元时可获得最大利润?最大利润是多少?
6、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线 ,
其中 (m)是球的.飞行高度, (m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
比例线段
1.相似形:在数学上,具有相同形状的图形称为相似形
2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
3. 比例的性质
(1)基本性质: , a∶b=b∶c b2=ac
(2)比例中项:若 的比例中项.
比例尺 = (做题之前注意先统一单位)
以上就是初三数学寒假作业之求二次函数的应用的全部内容,希望你做完作业后可以对书本知识有新的体会,愿您学习愉快。
《二次函数》教案5
二次函数的性质与图像
【学习目标】
1、使学生掌握研究二次函数的一般方法——配方法;
2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;
3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。
【自主学习】
二次函数的性质与图像
1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。
2)函数 的图像和性质:
(1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。
(2)函数 为 (填“奇函数”或“偶函数”)。
(3)函数 的图像的对称轴为 。
3)二次函数 的性质
(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。
(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。
(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。
跟踪1、试述二次函数 的.性质,并作出它的图像。
跟踪2、研讨二次函数 的性质和图像。
跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?
跟踪4、课本P60练习B
1、
【归纳总结】
研究二次函数的图像与性质的思路是什么?
函数二次函数 (a、b、c是常数,a≠0)
图像a>0 a<0
性质
【典例示范】
例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。
例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。
(1)函数 , 的图像的顶点是(4, );
(2)函数 , 图像的顶点是 。
《二次函数》教案6
目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,
AB长x(m)123456789
BC长(m)12
面积y(m2)48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的.长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并 回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
5.若设该商品每天的利润为y元,求y与x的函数关系式。
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x (0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y =-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式 )
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y= 5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。
《二次函数》教案7
教学目标:
1、使学生进一步理解二次函数的基本性质;
2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.
3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.
教学重点:初步理解数形结合的数学思想
教学难点:初步理解数形结合的数学思想
教学用具:微机
教学方法:探究式、小组合作学习
教学过程:
例1、已知:抛物线y=x2-(m2-1)x-2m2-2
⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点
⑵m取什么实数时,两交点间距离最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴抛物线与x轴有两个交点
问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)
设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.
数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)
∴
这样交点问题就转化成求这个二元二次方程组的解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c
y =0
有两个不等的`实数解
∴抛物线与x轴交于两个不同的点.
形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.
设计意图:渗透解析几何的基本思想
使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.
转化成代数语言为:
小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.
第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.
思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.
设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.
⑵m取什么实数时,两交点间距离最短?是多少?
解:设二次函数与x轴的两交点为(x1,0),(x2,0)
解法㈠ 由⑴可知m为任何实数时, 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴当m =0时,两交点最小距离为3
这里两交点间距离是m的函数
设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想
问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.
设x1、x2 为ax2+bx+c =0的两根
可以推出:
还可以理解为顶点到x轴距离最短.
设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.
小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.
解法㈡:用十字相乘法或求根公式法求根.
思考:一元二次方程与二次函数的关系.
思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?
练习:
观察函数 的图象,回答:
(1)y>0时,x的取值范围如何?
(2)y=0时,x取什么值?
(1)y<0时,x的取值范围如何?
小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.
探究活动
探究问题:
欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.
(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?
(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?
(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?
(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)
解:(1)(14—8) (元)
(2)638元、728元、748元、792元、792元、750元。
(3)设降价 元时利润最大,最大利润为 元
=
=
=
∴ 当 时, 有最大值
元
(4)设降价 元时利润最大,利润为 元
(其中 )。
化简,得 。
,
∴ 当 时, 有最大值。
∴ 。
数学教案-二次函数y=ax2+bx+c 的图象
《二次函数》教案8
教学目标:
1、经历描点法画函数图像的过程;
2、学会观察、归纳、概括函数图像的特征;
3、掌握 型二次函数图像的特征;
4、经历从特殊到一般的认识过程,学会合情推理。
教学重点:
型二次函数图像的描绘和图像特征的归纳
教学难点:
选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。
教学设计:
一、回顾知识
前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)
引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。
板书课题:二次函数 ( )图像
二、探索图像
1、 用描点法画出二次函数 和 图像
(1) 列表
引导学生观察上表,思考一下问题:
①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?
②当x取 等互为相反数时,对应的y的值有什么特征?
(2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).
(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到 和 的图像。
2、 练习:在同一直角坐标系中画出二次函数 和 的图像。
学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)
3、二次函数 ( )的图像
由上面的.四个函数图像概括出:
(1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,
(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。
(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。
(4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。
(最好是用几何画板演示,让学生加深理解与记忆)
三、课堂练习
观察二次函数 和 的图像
(1) 填空:
抛物线
顶点坐标
对称轴
位 置
开口方向
(2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?
(抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)
四、例题讲解
例题:已知二次函数 ( )的图像经过点(-2,-3)。
(1) 求a 的值,并写出这个二次函数的解析式。
(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。
练习:(1)课本第31页课内练习第2题。
(2) 已知抛物线y=ax2经过点a(-2,-8)。
(1)求此抛物线的函数解析式;
(2)判断点b(-1,- 4)是否在此抛物线上。
《二次函数》教案9
一、教材分析
1、教材的地位和作用
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
2、教学的重点和难点
教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。
教学难点:掌握从函数的性质推断图象的方法。
二、目标分析
按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:
1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。
2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。
3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。
三、教法学法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。
四、教学过程分析
根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题
师生互动、探究新知
独立探究,巩固方法
强化训练,加深理解
小结归纳,拓展深化
布置作业,提高升华
环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数
的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。
在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的`分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.
在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。
教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.
通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。
第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。
最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.
以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。
《二次函数》教案10
教学目标
熟练地掌握二次函数的最值及其求法。
重 点
二次函数的的最值及其求法。
难 点
二次函数的最值及其求法。
一、引入
二次函数的最值:
二、例题分析:
例1:求二次函数 的最大值以及取得最大值时 的值。
变题1:⑴、 ⑵、 ⑶、
变题2:求函数 ( )的最大值。
变题3:求函数 ( )的最大值。
例2:已知 ( )的最大值为3,最小值为2,求 的取值范围。
例3:若 , 是二次方程 的两个实数根,求 的.最小值。
三、随堂练习:
1、若函数 在 上有最小值 ,最大值2,若 ,
则 =________, =________。
2、已知 , 是关于 的一元二次方程 的两实数根,则 的最小值是( )
A、0 B、1 C、-1 D、2
3、求函数 在区间 上的最大值。
四、回顾小结
本节课了以下内容:
1、二次函数的的最值及其求法。
课后作业
班级:( )班 姓名__________
一、基础题:
1、函数 ( )
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函数 的最大值是4,且当 =2时, =5,则 =______, =_______。
二、提高题:
3、试求关于 的函数 在 上的最大值 ,高三。
4、已知函数 当 时,取最大值为2,求实数 的值。
5、已知 是方程 的两实根,求 的最大值和最小值。
三、题:
6、已知函数 , ,其中 ,求该函数的最大值与最小值,
并求出函数取最大值和最小值时所对应的自变量 的值。
《二次函数》教案11
本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
2.4二次函数y=ax2+bx+c的图象(一)
教学目标
(一)教学知识点[
1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.
2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
教学方法
探索比较总结法.
教具准备
投影片四张
第一张:(记作2.4.1 A)
第二张:(记作2.4.1 B)
第三张:(记作2.4.1 C)
第四张:(记作2.4.1 D)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数y=3x2与y=3(X-1)2的图象的性质.
投影片:(2.4 A)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
X -3 -2 -1 0 1 2 3 4
3x2
3(x-1)2
(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?
(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.
(2)用描点法作出y=3(x-1)2的图象,如上图.
(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?
[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b. 都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.
不同点:
a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.
b. 它们的位置不问.[来源:Www.zk5u.com]
c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),
联系:
把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的'图像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b. 都足轴对称图形,对称轴都为x=1.
c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b. 它们的位置不同.
联系:
把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.
三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?
[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(2.4.1 C)
一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.
(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.
(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.
下面大家经过讨论之后,填写下表:
y=a(x-h)2+k 开口方向 对称轴 顶点坐标
a0
a0
四、议一议
投影片:(2,4.1 D)
(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.
(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.
y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.
y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.
板书设计
4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的
图象和性质(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)
4.议一议(投影片2.4.1 D)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.
《二次函数》教案12
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的'长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
《二次函数》教案13
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学重点:二次函数y=ax2的图象的作法和性质
教学难点:建立二次函数表达式与图象之间的联系
教学方法:自主探索,数形结合
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一 、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二 、 新授:
(一)动手实践:作二次函数 y=x2和y=-x2的图象
(同桌二人,南边作二次函数 y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)
(二)对照黑板图象 议一议:(先由学生独立思考,再小组交流)
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3. 当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三) 学生交流:
1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)
2.二次函数 y=x2 和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的 两个函数y=x2 和y=-x2 图象,根据图象回答:
(1)二次函数 y=x2和y=-x2 的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由 y=x2 的图象如何得到 y=-x2 的图象?
(四) 动手做一做:
1.作出函数y=2 x2 和 y= -2 x2的图象
(同桌二人,南边作二次函数 y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2 x2具有哪些性质吗?
(2)你能说出二次函数 y= -2 x2具有哪些性质吗?
(3)你能发现二次函数y=a x2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)
3.师生归纳总结二次函数y=a x2的图象及性质:
(1)二次函数y=a x2的图象是一条抛物线
(2)性质
a:开口方向:a0,抛物线开口向上,a〈 0,抛物线开口向下[
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的`左侧(X0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3 x2 和 y= -5 x2 有哪些性质
(2)说出二次函数y=4 x2 和 y= -1/4 x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)
1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线
2.知道二次函数y=a x2的性质:
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的左侧(X0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
《二次函数》教案14
目标设计
1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求
1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力, 学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求
1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程
导学提纲
设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富 ,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的'实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受 ,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
(一)前情回顾:
1.复习二次函数y=ax2+bx+c(a≠0)的图象、顶点坐标、对称轴和最值
2.(1)求函数y=x2+ 2x-3的最值。
(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)
3、抛物线在什么位置取最值?
(二)适当点拨,自主探究
1.在创设情境中发现问题
请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?
(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题, 目的在于让学生体会其应用价值??我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米2,得到:
Y=x(32-2x)= -2x2+32x
[错解]由顶点公式得:
x=8米时,y最大=128米2
而实际上定义域为11≤x ?16,由图象或增减性可知x=11米时, y最大=110米2
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错 解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与 形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
(三)总结交流:
(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:
图中窗户边框的 上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。)
(五)我来试一试:
如图在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMCN的面积最大,把最大面积是多少?
(2)当AM平分∠CAB时,矩形PMCN的面积.
(六)智力闯关:
如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最 大面积是多少?
作业:课本随堂练习 、习题1,2,3
板书设计
二次函数的应用??面积最大问题
课后反思
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。
《二次函数》教案15
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。 1。 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。 2。 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。 3。 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2。 ①
2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。 1。 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。 2。 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描点、连线: 按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三 运用新知、变式探究
画出函数 y=5x2图象
学生在画图象的过程当中遇到函数值较大的困难,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教师出示已画好的'图象让学生观察
注意:1。 画图象应描7个左右的点,描的点越多图象越准确。
2。 自变量X的取值应注意关于Y轴对称。
3。 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四。 四。 归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五 回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
【《二次函数》教案】相关文章:
二次函数教案07-28
《二次函数》教案03-02
《二次函数概念》教案03-25
二次函数教案15篇02-20
二次函数教学反思02-13
二次函数的教学设计04-01
二次函数教学反思03-06
初三二次函数教学反思10-20
数学二次函数教学反思04-22