- 高二数学知识点总结 推荐度:
- 高二数学知识点总结 推荐度:
- 高二数学知识点总结 推荐度:
- 相关推荐
【推荐】高二数学知识点总结
总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它是增长才干的一种好办法,因此我们需要回头归纳,写一份总结了。那么总结有什么格式呢?下面是小编为大家收集的高二数学知识点总结,希望能够帮助到大家。
高二数学知识点总结1
1.万能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.辅助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.单位向量:单位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根号(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根号(x1平方+y1 平方)*根号(x2 平方+y2 平方)
5.空间向量:同上推论 (提示:向量a={x,y,z})
6.充要条件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
高二数学知识点总结2
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的`方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
高二数学知识点总结3
1、在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。
这样定义直观形象,便于理解,而且对它们的性质也易推导。
对于球的定义中,要注意区分球和球面的概念,球是实心的。
等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。
2、圆柱、圆锥、圆和球的性质
(1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。
(2)圆锥的性质,要强调三点
①平行于底面的截面圆的性质:
截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。
②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:
易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BC≥AB,VC=VB=VA可得∠B≤BVC、
由于截面三角形的顶角不大于轴截面的顶角。
所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有
当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0、
③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式
l2=h2+R2
(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:
①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则
其中S1和S2分别为上、下底面面积。
的截面性质的推广。
③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有
l2=h2+(R-r)2
圆台的有关计算问题,常归结为解这个直角梯形。
(4)球的性质,着重掌握其截面的性质。
①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。
②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则
R2=r2+d2
即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。
3、圆柱、圆锥、圆台和球的表面积
(1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。
①圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。
圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。
②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为
③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为
这个公式有利于空间几何体和其侧面展开图的互化
显然,当r=0时,这个公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。
(2)圆柱、圆锥和圆台的侧面公式为
S侧=π(r+R)l
当r=R时,S侧=2πRl,即圆柱的'侧面积公式。
当r=0时,S侧=rRl,即圆锥的面积公式。
要重视,侧面积间的这种关系。
(3)球面是不能平面展开的图形,所以,求它的面积的方法与柱、锥、台的方法完全不同。
推导出来,要用“微积分”等高等数学的知识,课本上不能算是一种证明。
求不规则圆形的度量属性的常用方法是“细分——求和——取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。
4、画圆柱、圆锥、圆台和球的直观图的方法——正等测
(1)正等测画直观图的要求:
①画正等测的X、Y、Z三个轴时,z轴画成铅直方向,X轴和Y轴各与Z轴成120°。
②在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。
这里与斜二测画直观图的方法不同,要注意它们的区别。
(2)正等测圆柱、圆锥、圆台的直观图的区别主要是水平放置的平面图形。
用正等测画水平放置的平面圆形时,将X轴画成水平位置,Y轴画成与X轴成120°,在投影图上,X轴和Y轴上,或与X轴、Y轴平行的线段都取实长,在Z轴上或与Z轴平行的线段的画法与斜二测相同,也都取实长。
5、关于几何体表面内两点间的最短距离问题
柱、锥、台的表面都可以平面展开,这些几何体表面内两点间最短距离,就是其平面内展开图内两点间的线段长。
由于球面不能平面展开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。
高二数学知识点总结4
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的`求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
高二数学知识点总结5
1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.
2、倾斜角α的取值范围:0°≤α<180°.
当直线l与x轴垂直时,α=90°.
3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα
⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;
⑵当直线l与x轴垂直时,α=90°,k不存在.
由此可知,一条直线l的.倾斜角α一定存在,但是斜率k不一定存在.
4、直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式:
3.1.2两条直线的平行与垂直
1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2
2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
3.2.1直线的点斜式方程
1、直线的点斜式方程:直线经过点且斜率为
2、、直线的斜截式方程:已知直线的斜率为
3.2.2直线的两点式方程
1、直线的两点式方程:已知两点
2、直线的截距式方程:已知直线
3.2.3直线的一般式方程
1、直线的一般式方程:关于x、y的二元一次方程
(A,B不同时为0)
2、各种直线方程之间的互化。
3.3直线的交点坐标与距离公式
3.3.1两直线的交点坐标
1、给出例题:两直线交点坐标
L1:3x+4y-2=0
L1:2x+y+2=0
解:解方程组
得x=-2,y=2
所以L1与L2的交点坐标为M(-2,2)
3.3.2两点间距离
两点间的距离公式
3.3.3点到直线的距离公式
1.点到直线距离公式:
2、两平行线间的距离公式:
高二数学知识点总结6
一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的`教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高二数学知识点总结7
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。
当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式:
其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)垂直直线系
垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系: ,直线过定点 ;
(ⅱ)过两条直线 , 的交点的直线系方程为
( 为参数),其中直线 不在直线系中。
(6)两直线平行与垂直
当 , 时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组 的一组解。
方程组无解 ; 方程组有无数解 与 重合
(8)两点间距离公式:设 是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点 到直线 的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为 ,半径为
当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆 ,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V = ; S =
4、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
应用: 判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:
公理2的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理3:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3及其推论作用:
①它是空间内确定平面的依据
②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的.位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:a α a∩α=A a‖α
(9)平面与平面之间的位置关系:平行——没有公共点;α‖β
相交——有一条公共直线。α∩β=b
5、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行 线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为 。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为 。
②平面的垂线与平面所成的角:规定为 。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高二数学知识点总结8
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:
相关高中数学知识点:系统抽样
系统抽样的概念:
当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。
系统抽样的步骤:
(1)采用随机方式将总体中的个体编号;
(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即
=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;
(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;
(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。
相关高中数学知识点:分层抽样
分层抽样:
当已知总体由差异明显的.几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。
不放回抽样和放回抽样:
在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样
分层抽样的特点:
(1)分层抽样适用于差异明显的几部分组成的情况;
(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;
(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。
高二数学知识点总结9
平面向量
戴氏航天学校老师总结加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);
两个向量共线的充要条件:
(1) 向量b与非零向量共线的.充要条件是有且仅有一个实数,使得b= .
(2) 若=(),b=()则‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2
高二数学知识点总结10
一、集合、简易逻辑(14课时,8个)
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的`角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
十一、概率(12课时,5个)
1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。
十五、复数(4课时,4个)
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。
高二数学知识点总结11
考点一:求导公式。
例1.f(x)是f(x)13x2x1的导函数,则f(1)的值是3
考点二:导数的几何意义。
例2.已知函数yf(x)的图象在点M(1,f(1))处的切线方程是y
1x2,则f(1)f(1)2
,3)处的切线方程是例3.曲线yx32x24x2在点(1
点评:以上两小题均是对导数的几何意义的.考查。
考点三:导数的几何意义的应用。
例4.已知曲线C:yx33x22x,直线l:ykx,且直线l与曲线C相切于点x0,y0x00,求直线l的方程及切点坐标。
点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
考点四:函数的单调性。
例5.已知fxax3_1在R上是减函数,求a的取值范围。32
点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。
考点五:函数的极值。
例6.设函数f(x)2x33ax23bx8c在x1及x2时取得极值。
(1)求a、b的值;
(2)若对于任意的x[0,3],都有f(x)c2成立,求c的取值范围。
点评:本题考查利用导数求函数的极值。求可导函数fx的极值步骤:
①求导数f'x;
②求f'x0的根;③将f'x0的根在数轴上标出,得出单调区间,由f'x在各区间上取值的正负可确定并求出函数fx的极值。
高二数学知识点总结12
一、直线与圆:
1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:
(1)点斜式:直线过点斜率为,则直线方程为
(2)斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验
(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;
2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2
3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
三、直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半.
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
(1)柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
(2)锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
(3)台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
(4)球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
(1)异面直线所成角的求法:平移法:平移直线,构造三角形;
(2)直线与平面所成的角:直线与射影所成的角
四、导数:导数的.意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2、导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.、导数的四则运算法则:
5、导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
五、常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p
注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.
3、逻辑联结词:
(1)且(and):命题形式pq;pqpqpqp
(2)或(or):命题形式pq;真真真真假
(3)非(not):命题形式p.真假假真假
假真假真真
假假假假真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
高二数学知识点总结13
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的'数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二数学知识点总结14
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα。
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、,①∥,;②。
直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:。⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线。
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;
2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2
3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、,。(1);(2)。
2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即
3、模的计算:|a|=。算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:
三、直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤——Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作。
2、导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3、常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4、导数的四则运算法则:
5、导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数最大值与最小值的`步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
五、常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p
注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是;否命题是。命题“或”的否定是“且”;“且”的否定是“或”。
3、逻辑联结词:
⑴且(and):命题形式pq;pqpqpqp
⑵或(or):命题形式pq;真真真真假
⑶非(not):命题形式p。真假假真假
假真假真真
假假假假真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
全称命题p:;全称命题p的否定p:。
特称命题p:;特称命题p的否定p:
高二数学知识点总结15
考点一:向量的概念、向量的基本定理
【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的`知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇
【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用
【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
【高二数学知识点总结】相关文章:
高二数学的知识点总结07-13
高二数学知识点总结05-06
数学高二知识点总结归纳07-25
高二知识点数学总结归纳06-15
高二知识点数学总结归纳02-02
高二数学复习知识点总结07-12
【热】高二数学知识点总结06-05
高二数学知识点总结【荐】06-05
高二数学知识点总结【精】06-05
【热门】高二数学知识点总结06-05