- 小学四年级上册数学知识点总结 推荐度:
- 小学四年级上册数学知识点总结 推荐度:
- 小学数学知识点总结 推荐度:
- 相关推荐
小学数学知识点总结15篇
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以有效锻炼我们的语言组织能力,因此十分有必须要写一份总结哦。我们该怎么写总结呢?下面是小编整理的小学数学知识点总结,欢迎阅读与收藏。
小学数学知识点总结1
第一章————除法
1、用乘法口诀做除法,余数一定要比除数小;
2、应用题中,除数和余数的单位不一样;
商的单位是问题的单位,余数的单位和被除数的单位相同;
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
第二章————方向与位置(认识方向)
1、地图上的方向口诀:上北下南,左西右东;
辨认方向时要画方向标。
2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
“小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。
3、太阳早上从东边升起,西边落下;
指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()
4、当吹东南风时,红旗往()飘;
吹西北风时,红旗往()飘。
第三章————生活中的大数(认识10000以内的数)
1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。
5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;
末尾不管有几个“0”,都不读;
写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。
6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。
7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。
第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
4、长度单位的.加减法,米加米,分米加分米.......就是把相同的单位进行加减。
第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。
2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;
3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;
如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;
4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)
5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
980-()=760(用980-760计算)
6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;
7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。
第六章————认识角1、每个角都是由1个顶点和2条边组成;
2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。
3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;
4、正方形有四个直角,四条边都相等;
长方形有四条边,四个直角,长方形的对边相等;
5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。
第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;
2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;
4、时针走一大格是1小时,走一圈是12小时;
5、时、分、秒相邻单位的进率是60;
1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。
7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
第八章————统计1、记录并学会计算,谁多,谁少。
小学数学知识点总结2
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的`分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
小学数学知识点总结3
一生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的'认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
小学数学知识点总结4
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的.参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
学好数学的方法和技巧总结
主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
让数学课学与练结合
在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
单项式书写格式
1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
2、π是常数,因此也可以作为系数。它不是未知数。
3、若系数是带分数,要化成假分数。
4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。
5、在单项式中字母不可以做分母,分子可以。
6、单独的数“0”的系数是零,次数也是零。
7、常数的系数是它本身,次数为零。
8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
小学数学知识点总结5
(一)数与计算
(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量
钟面的认识(整时)。人民币的`认识和简单计算。
(三)几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学数学知识点总结6
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的进位加法与退位减法的.计算方法进行正确的计算。
2、经历与他人交流各自算法的过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。
小学数学知识点总结7
(一)口算除法
1、整十数除整十数或几百几十的数的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的'前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
(三)商的变化规律
1、商变化:
(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。
(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。
2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13
小学数学知识点总结8
1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。
②用尺子画横线。
③从个位加起
④如果个位满10,向十位进1,写在个位、十位之间,
不进位不写1
用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。
②用尺子画横线。
③从个位减起
④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点
⑤得数写在横式上
2、估算:把一个接近整十整百的数看作整十整百来计算。
方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”
如:49+42≈9028+45+24≈10098—17≈80
50 4030 50 20100 20更深一步的估计是能够估出比80大
注:当问题里出现“大约”两个字时,就需要估算。
3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。
4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。
方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法
基数和序数的区别
一、意思不同
基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。
二、用处不同
基数可以比较大小,可以进行运算。
例如:
设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。
序数,汉语表示序数的.方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、写法
基数:1、2、3
序数:第1、第2、第3
数与计算知识点
1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
小学数学知识点总结9
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的`,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
小学数学知识点总结10
一、认识数
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
二、数一数
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
三、比较数列
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
四、动手做
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
五、找规律
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
六、填一填
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的`数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
七、比较2个算式的大小的方法是:
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
八、总结
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
小学数学知识点总结11
1.奇偶性
问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原则
形如:abc=100a+10b+c
3.数的整除特征:
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的`余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r
小学生奥数知识点
数列求和:
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示。
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:sn,=(a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n=(an+a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:确定已知量和未知量,确定使用的公式
小学奥数几何知识点整理
鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:
若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM
这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2
因为共边,所以两个对应高之比是1:2
而四个小三角形也会存在类似关系
三角形ABE和三角形ACE的面积比是1:2
三角形BED和三角形CED的面积比也是1:2
所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。
小学数学知识点总结12
1、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。
2、(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
(4)边长是100米的正方形,面积是1公顷。1公顷=10000平方米
测量土地的面积,可以用公顷作单位。
例如:鸟巢的占地面积约1公顷。400跑道围起来的部分的面积大约是1公顷。
(5)边长是1000米的正方形,面积是1平方千米。
1平方千米=100公顷=1000000平方米
我国陆地领土面积约为960万平方千米。
3、面积单位之间的.换算:
(1)首先要记住它们之间的进率:
1平方千米=100公顷=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方米=10000平方厘米
(2)换算方法:
○1把高级单位化为低级单位,要用乘法计算,只要用高级单位前面的数去乘这两个单位之间的进率。(即高化低,乘进率,小数点向右移,移几位,看进率。)
○2把低级单位聚成高低级单位,要用除法计算,只要用低级单位前面的数去除以这两个单位之间的进率。(即低化高,除以进率,小数点向左移,移几位,看进率。)
a、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。
b、把平方米转化为公顷,只要在平方米前面的数据后面直接去掉4个0。
c、把平方千米转化为公顷,只要在平方千米前面的数据后面直接添写2个0。
d、把平方千米转化为平方米,只要在平方千米前面的数据后面直接添写6个0。
e、把平方米转化为平方千米,只要在平方米前面的数据后面直接去掉6个0。
4、填写面积单位的规律:
(1)国土面积、省份(含直辖市)面积、省会城市面积、州(市)面积、县、乡镇面积、村委会、村庄面积、一般要用“平方千米”作单位。
(2)公园、院(校)园、体育场(馆)等,一般要用“公顷”作单位。
(3)房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。
小学数学知识点总结13
1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。
2、学会观察,能在生活中找出基本的形状,会举例。
3、能区分出面和体的关系,体会“面在体上”。
4、能找出一组图形的规律。
5、能在复杂的`图案中找出基本的图形。
小学数学知识点总结14
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
4 × 3 = 12或3 × 4 = 12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
3、乘法算式中各部分的名称及实际表示的意义
在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。
4、乘法算式所表示的意义
求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。
5、加法写成乘法时,加法的和与乘法的积相同。
6、乘法算式中,两个乘数交换位置,积不变。
7、算式各部分名称及计算公式。
乘法:乘数×乘数=积
加法:加数+加数=和
和—加数=加数
减法:被减数—减数=差
被减数=差+减数
减数=被减数—差
8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
如:1×9=10—1 9×5=50—5
9、看图,写乘加、乘减算式时:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14
10、“几和几相加”与“几个几相加”有区别
求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)
求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8
2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64
11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),
都可以用口诀(三五十五)来计算,表示(3)个(5)相加
3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15
第五单元观察物体
1、从不同的角度观察同一物体,所看到的'物体的形状一般是不同的;
2、观察物体时,要抓住物体的特征来判断。
3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形
4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形
第七单元认识时间
1、认识时间
(1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;
(2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。
(3)时针走1大格分针要走一圈,所以1时=60分;
(4)半小时=30分,一刻钟=15分钟
(5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。
2、运用知识解决问题
(1)要按着时间的先后顺序安排事件,时间上不能重复。
(2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。
(3)时针和分针能形成直角的时刻是3时和9时。
第八单元数学广角-搭配
1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。
2、借用连线或者符号解答问题比较简单。
3、排列与顺序有关,组合与顺序无关。
小学数学知识点总结15
人教版小学数学知识点大全 基本概念
第一章 数和数的运算 一、概念 (一)整数
1、整数的意义
自然数和0都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。
10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
? 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
? 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。? 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。 (二)小数
1、小数的意义
把整数1平均分成10份、100份、1000份?? 得到的十分之几、百分之几、千分之几?? 可以用小数表示。如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)??小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大??
5、小数的分类
? 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
? 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
? 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
? 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 ?? 3.1415926 ??
? 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
? 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ??的循环节是“ 9 ” , 0.5454 ??的循环节是“ 54 ” 。
? 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 ?? 0.5656 ??
? 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 ?? 0.03333 ??
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。 (三)分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
? 分母相同的分数,分子大的那个分数就大。
? 分子相同的分数,分母小的那个分数就大。
? 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
? 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
? 真分数:分子比分母小的分数叫做真分数。真分数小于1。
? 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
? 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
? 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。? 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
? 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
? 分子、分母是互质数的分数,叫做最简分数。
? 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
? 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
? 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
? 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数
? 乘积是1的两个数互为倒数。
? 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
? 1的倒数是1,0没有倒数 (四)百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。
5、纳税和利息:
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间
6、百分数与分数的区别主要有以下三点:
? 意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。
? 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
? 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的'分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
? 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
? 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
? 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
? 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
? 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
? 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
? 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除
1、整除的意义
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数
? 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就(来自:WWw.SmhaiDa.com :小学数学总结)叫做a的约数(或a的因数)。倍数和约数是相互依存的。
? 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
? 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
? 自然数按能否被2 整除的特征可分为奇数和偶数。
① 能被2整除的数叫做偶数。0也是偶数。
② 不能被2整除的数叫做奇数。
? 奇数和偶数的运算性质:
① 相邻两个自然数之和是奇数,之积是偶数。
② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
4、整除的特征
? 个位上是0、2、4、6、8的数,都能被2整除。
? 个位上是0或5的数,都能被5整除。
? 一个数的各位上的数的和能被3整除,这个数就能被3整除。
? 一个数各位数上的和能被9整除,这个数就能被9整除。
? 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
? 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
? 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
5、质数和合数
? 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
? 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
? 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
6、分解质因数
? 质因数
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
? 分解质因数
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
? 公因(约)数
几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;
②相邻的两个自然数互质;
③当合数不是质数的倍数时,这个合数和这个质数互质;
④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
? 公倍数
① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 二、性质和规律 (一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化
1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍??
2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍??
3、小数点向左移或者向右移位数不够时,要用“0"补足位。 (四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系
1、被除数÷除数= 被除数/除数
2、因为零不能作除数,所以分数的分母不能为零。
3、被除数 相当于分子,除数相当于分母。 三、运算法则 (一)整数四则运算的法则
1、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和一个加数=和-另一个加数
2、整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。
一个因数× 一个因数 =积一个因数=积÷另一个因数
4、整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
5、乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 (二)小数四则运算
1、小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
【小学数学知识点总结】相关文章:
小学数学知识点总结08-01
小学的数学知识点总结10-18
小学数学重点知识点总结04-25
小学数学知识点总结大全06-23
数学的知识点总结08-22
数学的知识点总结05-11
小学数学知识点总结精选15篇08-23
小学数学知识点总结(精选15篇)08-23
小学的数学知识点总结3篇10-18