- 平均数教学设计 推荐度:
- 平均数教学设计 推荐度:
- 小学数学《平均数》教学设计 推荐度:
- 相关推荐
平均数教学设计(必备)
作为一位杰出的老师,通常需要准备好一份教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?下面是小编整理的平均数教学设计,希望能够帮助到大家。
平均数教学设计1
一、教学目标
1、知识与技能:
①掌握算术平均数,加权平均数的概念。
②会求一组数据的算术平均数和加权平均数。
2、解决问题:通过解决实际问题,让学生初步体会数学与生活的密切联系。
3、情感与态度目标:通过小组合作的活动,培养学生的合作意识和能力。
4、数学思考:能通过收集到的数据进行加工处理,进而作出评判。
二、教材分析
“平均数”是(北师大版)八年级上册第八章《数据的代表》的第一节内容,教学安排两个课时,本教学设计为第一课时。
设计意图:
①让学生在小学已学过的算术平均数的基础上复习巩固,总结出算术平均数的概念,并从求算术平均数的简便算法中渗透加权平均数的意识。
②通过例题讲解引出加权平均数的概念,使学生体会到由于工作不同,对各方面的.要求就不同,哪一方比较重要,权就比较大。
③通过帮助学生解决有关问题,总结出对概念的理解,得出两种求平均数的方法。
三、教学设计
(一)导入新课
1、一个寻宝者寻宝的途中被一条河拦住了去路,没有桥也没有小船可以过河,他又不会游泳。一位过路人告诉他这条河的平均深度1.5米。寻宝者的身高是1.75米。你认为寻宝人可以安全度过这条河吗?为什么?
2、在每次考试结束后,我们都想知道班级成绩和个人成绩在年级中的排名如何,那么必须收集哪些数据才能得出结论呢?
(二)讲授新课
1、打篮球是大家喜欢的一种运动项目,请问同学们影响比赛成绩的因素有哪些?(心理因素、配合程度、技术成份、身高和年龄等。)
2、小组分工:第一组计算“八一双鹿队”的平均身高;第二组计算“东方大鲨鱼队”的平均身高;第三组计算“八一双鹿队”的平均年龄;第四组计算“东方大鲨鱼队”的平均年龄。
3、小组里选出代表公布算法与结果。
(八一双鹿队的平均身高为1.99米,平均年龄为25.3岁;东方大鲨鱼队的平均身高为1.98米,平均年龄为23.3岁。所以这两支篮球队中,八一双鹿队队员的身材更为高大,上海东方大鲨鱼队队员更为年轻。)在此,出现了两种算法:一是逐个相加法,二是加、乘法结合的简便算法。在小组计算后,教师请同学们对上述的两种算法发表看法。师生归纳得出求平均数的简便算法。
4、总结出算术平均数的定义:
5、例1(课本218页)讲解:出示题目让学生讨论后解答。师问:计算(1)与(2)的结果不一样,说明了什么?同学交流之后发表看法。教师总结。
6、总结出加权平均数的概念。
(三)课堂练习
1、随堂练习(见课本);
2、补充练习:
(1)上学期期末考试后,某同学数学科的期考成绩为86分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分。
①请问他一学期的数学平均成绩是多少?
②如果期末总评成绩按:平时成绩占30%,期中成绩占30%,期末成绩占40%计算,那么该同学期末总评数学成绩是多少?
(2)据有关资料统计,1978~1996年的18年间,我国有13。5万学生留学美国,请计算这18年间平均每年留学美国的人数。
(四)课堂小结平均数具有怎样的意义?如何计算平均数?说说算术平均数与加权平均数的联系和区别?
四、教学反思
这节课,大部分学生表现积极,热情高、兴趣高,分组计算平均身高和年龄学生们有兴趣,很快就能算出来,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,在这种前提下,简便算法的推出就水到渠成了。
平均数教学设计2
教学目标:
1. 使学生掌握平均数的意义和求平均数的方法。
2 . 使学生能根据数据列出算式求平均数。
3. 在教学活动中提高学生的发散思维能力。
教学重、难点:
1. 重点:掌握平均数的意义和求平均数的方法。
2. 难点:能根据数据列出算式求平均数。
教学过程:
一. 谈话导入
列式:8 ÷4=2 ,在这个算式里 8 称为什么数?(总数) 4 称为什么数?(份数)得到的 2 称为什么数?(每份数,也叫平均数)
今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。
揭示课题:平均数
二. 探求新知
1. 导入新课
同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。
(1)出示统计图。
(2)观察:从统计图中,你能了解到哪些信息?
(3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使 4 个人收集的废瓶子一样多呢?大家来想想办法。
组织学生交流、讨论,然后指名回答。
一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。
二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了 4 个人,再除以 4 )
教师根据学生的回答,并板书:
( 14+12+11+13 )÷4
=52÷4
=13(个)
“ 13 ”在这里也叫什么数?
(4)巩固提问:这里为什么要除以 4 ?
(5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。
三. 巩固提高
1. 用四个同样的杯子装水,每个杯子分别标有水面的高度,这四个杯子水面的平均高度是多少厘米?(12厘米,6厘米,10厘米,4厘米)
(1) 指名学生汇报,并说一说你们是怎么求平均数的。教师板书。
(2) 根据学生的完成情况,教师小结。
2、一本书,小明第一天读了12页,第二天读了20页,他平均每天读了多少页?
3、 活动:求平均年龄
在小组内说出每个同学的年龄,小组长作好记录,然后根据记录要求学生独立求出本小组同学的.平均年龄。
4、想一想:下面哪个列式才对?
下面是一只母鸡六个月产蛋的统计表。根据题目中给的数据,算出这只母鸡平均每月产多少蛋。
月份个数
一月20
二月23
三月26
四月28
五月30
六月29
5、一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克。这个小组的平均体重是多少千克?
6、想一想:游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?
四. 全堂小结
今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?
五.布置作业,课后拓展延伸。
自已调查家人的身高及体重,算出平均身高和平均体重。
教案说明:用谈话的方式来培养学生热爱卫生,保护环境的意识来导入进新课(教学例题)。
最后的巩固提高也是按从易到难来设计,先让学生求小棒 的平均数巩固好已学的求平均数的方法,然后用课堂活动来提高学生的学习兴趣,不但培养了学生的学习能力,更好的提高了学生的动手合作能力和运用知识解决问题的能力,更好的提高了学生的学习积极性。
平均数教学设计3
一、内容和内容解析
本节教学内容源于人教版八年级下册“20、1、1平均数”第一课时
统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节、平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念、
本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”、尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础、
基于上述分析,确定本节教学重点是:
以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题、
二、目标和目标解析
1、通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数、教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题、
2、通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的`联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度、
3、通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性、通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性、
三、教学问题诊断分析
1、教师教学可能存在的问题:
(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;
(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;
(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;
(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高、
2、学生学习中可能出现的问题:
(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;
(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情
鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用
四、教学支持条件分析
在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度、
五、教学过程设计
活动一:创设情景,建立模型,揭示概念
问题1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义、
在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:
(1)谈谈表格中“86分”所反映的实际意义、
(2)求这两个班的平均成绩,并和同伴交流你的计算方法、
平均数教学设计4
教学目标
1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。
2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题能力。
教学重难点
教学重点:灵活选用“求平均数”的方法解决实际问题。
教学难点:平均数的意义
教学准备:多媒体课件、秒表、绳子
教学流程
(一)创设情境,激发兴趣
师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?
生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。
师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?
生:6人一起跳,分组数数。
师:哦,好主意!那就按你的方法比赛吧!
(二)解决问题,探求新知
1、引出“平均数”,体验“平均数”产生价值。
6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:
第一组:82、86、81第二组:78、83、82
师:请同学们以最快的口算算出结果,并汇报补充板书如下:
第一组:82+86+81=249第二组:78+83+82=243
师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)
师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)
师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?
生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。
师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的'办法来比较这两组总体跳绳水平的高低了吗?
(全班寂然无声,学生思索着,半晌,有学生举手了)
生:我在电视上看到过这种类似的情况,比较平均数就可以了。
(这时有很多学生表示赞同,并投去了赞赏的目光)
师:(赞赏)哦,你知道的知识真多,老师佩服你!
2、探索求平均数的方法
师:怎样计算每个组跳绳的平均数呢?
(在老师的引导下,学生提出了方法,师要求任选一组说想法)
生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83
生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83
师:谁听明白了吗?(再指5名学生说)
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法移多补少法
师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
......
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数......
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县1999—xxxx年家庭电脑拥有量的统计图。
图略:1999年350台,20xx年600台,xxxx年1000台,xxxx年1600台,xxxx年2500台
(1)求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2)估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?
(3)从图上你还知道些什么?
2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
b、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法移多补少法)
第一组:(82+86+81)/3=83第二组:(78+83+82+83)/4~81
当人数不相等,比总数不公平时,我们就得看“平均数”。
“平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势
平均数教学设计5
教学目标:
1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。
2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。
3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。
教学重点:体会平均数的意义,掌握求平均数的方法。
教学难点:理解平均数的意义
教学具准备:套圈统计图(每组一个)、多媒体课件
教学过程:
一、设疑引欲,提出问题
看套圈比赛的录像,出示统计图。
1、这幅统计图表示他们套中的个数,从中你知道了些什么?
2、想一想,是男生套得准一些还是女生套得准一些呢?
二、解决问题,探求新知
1.产生求平均数的心理需求
(1)学生讨论交流哪一队套圈套得准一些。
(2)提问:怎样比才既合理又公平呢?
(3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的`个数,也就是平均数。
2.自主探索平均数的意义和计算方法
先求男生平均每人套中的个数,学生讨论交流。
(1)通过移多补少,直观揭示平均数的意义
(2)揭示“先求和再平均分”的求平均数的一般方法
列式计算:5+9+8+6=28(个)28÷4=7(个)
这里的28指的是什么?为什么要除以4?
求女生平均每人套中的个数。
(1)估一估
(2)算一算:11+4+8+2+5=30(个)30÷5=6(个)
这里的30指的是什么?为什么这里用总数除以的是5而不是4?
小结:通过比较,我们发现在这次比赛中,男生套得准一些。
3.理解平均数的范围
(1)比较
男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?
(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。
三、拓展练习,深入理解
1.练习用“求和再平均分”的方法求平均数
(1)出示校运动队三年级学生肺活量情况统计图(三名学生)
提问:你能算出他们的平均肺活量吗?
交流:把你的想法与同学们交流交流。
(2)出示三年级部分学生肺活量情况统计图(四名学生)
提问:算算他们的平均肺活量。
比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。
2.加深对平均数意义的理解
(1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?
(2)学生交流
3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确
(1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。
我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)
次数第一次第二次第三次第四次第五次心率(次/分)150160180170140
(2)提问:从表中你知道些什么?
(3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?
①130次②160次③190次
(4)根据平均数的这个特点,你能说出这个平均数的范围吗?
(5)小明的运动量适宜吗?
4.进一步理解平均数的意义
(1)出示一高一矮两名学生
指一指:他们俩的平均身高大概在什么位置?
(2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)
指一指:另一位体坛明星大概有多高?
(3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)
指一指:这位运动员的身高大概在哪里?
猜一猜:他是谁?
(4)出示新浪网上的NBA排行榜
找一找:有平均数吗?
想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?
四、全课总结,提升认识
平均数教学设计6
教学目标:
1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
理解平均数的意义,学会求简单数据的平均数。
教学过程:
一、创设情境,自主探究
1.呈现套圈情境。
多媒体演示“套圈比赛”场景。谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?
2.收集整理数据。
多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。
【设计意图:运用多媒体对教材例题进行动态处理,能有效地激发学生的学习兴趣。通过“摆”小方块制作统计图,目的是让学生亲历数据收集整理的过程,同时也为后面用“移多补少”的方法求平均数作准备。】
3.引入平均数。
出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)
【设计意图:富有启发性的“追问’’,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。
【设计意图:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。
观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。
提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?可以通过哪些方法来验证?谈话:女生平均每人套中多少个圈呢?你是怎样知道的?先和小组内的同学一起说一说。反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?提问:现在你能判断男生套得准还是女生套得准吗?小结:通过刚才的活动,我们认识了什么?你能结合刚才的例子,说一说平均数表示的意义吗?
【设计意图:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】
二、联系实际,拓展应用
我们一起玩闯关游戏好吗?
1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。
(1)想想做做第1题。移动笔筒里的铅笔,看看平均每个笔筒里有多少枝?还可以用其他的方法求出来吗?
(2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。
2、挑战第二关“明辨是非”
(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()
(2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()
(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()
(4)学校篮球队可能有身高超过160厘米的队员。()
3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表
学号1 2 3 4 5
身高(厘米)132 134 136 140 142
(1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?
(2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。
【设计意图:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识,闯关游戏更能激发学生的学习兴趣。】
三、总结评价,感情升华
今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?
教后反思:
本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。
具体地说有以下几个特点:
1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。
2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的'、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。
3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。
平均数教学设计7
教学目标:
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。
2.能运用平均数的知识解释简单生活现象,解决简单的实际问题,进一步积累分析和处理数据的方法,发展数感。
3.在生活中增强与他人交流的意识与能力,在解决实际问题的过程中体验运用知识解决问题的乐趣,建立学好数学的信心,渗透品德教育。
教学重点:理解平均数的意义和求平均数的方法。
教学难点:理解平均数的意义。
教学设计思路:
根据学生耳鸣目染的生活现状创设不同层次的问题情景,学生在答题过程中逐步感受求平均数是解决一些实际问题的需要,并通过动手移、合与分的操作和思考交流体会平均数的意义,学会计算简单数据的平均数,从中渗透安全教育。
教学过程
一、创设情境,探究新知。
同学们,现在全区开展“美丽广西.清洁乡村”的活动,作为市民,我们也要为此付出一份力量。你看,阳光学校三(2)班的同学为了响应党的号召,利用课余时间进行捡别人丢弃的矿泉水瓶比赛,他们班共有37人,每 3人为一组,可以分几组还剩几人?37÷3=12(组)……1(人)
【设计意图】:用学生耳鸣目染的生活情景创设问题,即复习了平均分,又为下一个环节做好铺垫。
(一)两队人数相同,比总个数。
他们班每天从2个组中评出一组“美丽之星”,你觉得他们哪一组获星?
出示:
A 组
B 组
生:B组获星。
师:你是怎么比的?
生:当他们人数相等时,比较捡的总个数就能比出哪一组获星。
(二)两组人数不同,比平均数,发现求平均数的方法。
我们再来看看下面两组,看看哪一组获得这天的“美丽之星”出示:
C组
D组
生:我的建议也是比较他们的总数?
生:我有不同意见,人数不同比总数不公平。
师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。
师:那怎么比才公平呢?
生:减少1个人
生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的'。我们不能忽视别人的劳动成果。
师:说得多好!你不但会分析问题而且很会做人!
师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。
【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的兴趣。
(学生小组活动,教师巡视,学生汇报)
生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。
师:那我们怎样平均分呢?
学生诉说小结:也就是使每组中的每个人捡得同样多。
学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。
(学生用学具探究方法)
师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)
师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】
师:谁来汇报 D组的呢。
师:你是用什么方法找出D组同样多的?
(生讲师再次呈现移多补少过程)
探讨不同的方法引出列式计算。
板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
学生指着板书说说先合后分的方法。
师:你为什么C组除以3, D组除以4呢?
生:因为C组有3人而D组有4人。
归纳得出:总数量÷总份数
谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)
完善板书:总数量÷总份数=平均数
【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。
二、深入理解平均数的定义(意义)
师:C组的总数量是多少?总份数呢?平均数是?
师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。
仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)
生:超出平均数的部分和不到平均数的部分相同。
生:平均数比这里最大的数小一些,比最小的数大一些。
生:平均数是在这组数据的最大数和最小数之间。
师:还有发现吗?
生:C组的数据还有和平均数恰好一样的。
师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?
生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。
师:你分析得很有道理。
师:我们比较这两组的平均数,哪个组获星了?
生:A组获星了,
师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧
【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。
三、用一用,怎样理解生活中的平均数。
师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)
师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……
师:老师也带来一些素材:(课件出示)
小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。
过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!
【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。
(一)平均成绩
下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军
(学生独立填写表格,有的很快就算出了结果,有的还在笔算)
师:你为什么算得这么快?能把你的小窍门告诉大家吗?
生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。
师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。
用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。
【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。
(二)歌咏比赛平均分
出示
要求算出1号选手的实得分
师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?
学生的答案在82到97之间
猜完列式验证自己的答案。
(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)
小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。
【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。
(三)平均水深
老师这里有一道有趣的问题
一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?
生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。
(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)
出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!
【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。
四、总结评价,感受成功。
提问:通过这节课的学习,你有哪些收获呢?
从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。
布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。
课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。
五、板书设计
平均数
①移多补少
②先合后分 总数量÷总份数=平均数
C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
平均数教学设计8
一、教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。用数据分析、比较、等多种方式来解决问题,提高学生解决问题的能力,拓宽学生解决问题的途径。
3、情感与态度:在愉悦轻松的课堂里,掌握富有挑战的知识,丰富生活经验的积累。在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。
二、重点难点
教学重点:通过直观的方式使学生理解什么是平均数,再利用平均分的意义,使学生理解。同时感受平均数在统计学上的意义和作用。
教学难点:总结出求平均数的一般方法,实现从直观到抽象的过渡。
教学准备:幻灯片、磁铁、统计图等
三、教学过程
(1)、创设情境、提取数据
话题:同学们投篮过吗?老师也会投篮,一分钟我一般可以投4个。可是在一分钟投篮测试中我第一次投居然只投了一个。只测这一次能测出我的我的一般水平吗?那怎么办?
就像同学们所说,多测试几次就能把一般水平体现出来。
(2)、解决问题,探求新知。
你们瞧,快乐篮球队也正在进行一分钟投篮的测试。为了能较好地测出队员的一般水平,体育老师让他们每人测三次。
师:第一个出场的`是小林。你们说用几个来记录小林一分钟投篮的一般水平呢?
接下来轮到小华出场了。看他第一次投了5个。是不是也可以用5个表示他的一般水平了?
生:5+6+7=18(个)18÷3=6(个)
师:像这样把三次投的个数合起来再平均分给这三次,使三次投篮每次投中的个数看起来同样多,这个同样多的数就叫做平均数。(板书:平均数)
刚好第二次投中的个数和平均数一样多
师:能代表小刚第一次、第三次投中的个数吗?
生:是小刚1分钟投篮的一般水平(师板书:一般水平)
师:也就是说,6是这三次投篮的平均数,在这里我们就可以说6是5、6、7的平均数。
师:小强测三次,求得的平均数能较好地反映他的一般水平,如果想更好地测出他的一般水平可以再多测4次5次甚至更多次,次数越多平均数就越能表示他们投篮的一般水平。
紧接着小强投篮的情况也出来了
师:该用几个表示小强投篮的一般水平?
师:除了列式计算(移多补少),你还有别的方法吗?
动手移移看拿出小圆片,像老师这样用圆片表示投篮的个数,想一想怎么移能让三次看起来一样多,再移一移?
师:我们还可以说,通过移多补少使每次个数看起来同样多的数,叫做平均数。
【设计意图:知道平均数的含义,掌握求平均数的方法】
(3)、自主探索,合作交流。
师:其实除了我们刚刚求得的平均数,生活中也有许多平均数就藏在我们身边。
图1,老师通过抽样调查统计出我校三年级同学平均身高是……。
平均身高124厘米表示什么?
图二,丽江春节期间平均每天3万游客。表示什么?
图3,冬冬身高140厘米,到一个平均水深110厘米池塘游泳会不会有危险?
师:除了这几个生活中的平均数以外,你还能举出其他生活中的平均数吗?
【设计意图:了解求平均数的意义】
(四)、归纳总结,知识拓展。
学了这节课,你有什么收获?
平均数教学设计9
本课时学习目标:
1.通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2. 能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3. 进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
本课时重点难点:平均数的意义及求平均数的方法。
学习过程
自学准备与知识导学:
1、预习课本92-93页的内容,不明白的'地方标出来。
2、通过预习,我认为男生与女生相比, 套得准,因为小组内交流预习情况
学习交流与问题研讨:
1、要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?
2、出示学习菜单:
(1)书中有几种方法求男生平均成绩的?谁能给大家介绍介绍?
(2)仔细看统计图的变化过程,思考是如何分的?
(3)怎样列算式计算?
归纳总结:要求平均数,可以先求出( )数,再()。
3、研究平均数的意义。
(1)这个7分就是男生每人实际得分吗?你是怎么理解的?
(2)请你仔细观察平均数与原来的这一组数,你发现了什么?
4、算女生平均分。
(1)先估计女生平均每人套中多少个?你是怎么想的?
(2)大家估计得准不准呢?用什么方法验证一下?
(3)说说你的验证方法。
(4)为什么要除以5?
小组讨论菜单中的问题
点拨:这种方法叫:“移多补少”
点拨:这种方法叫:“求和均分”
小组交流,教师巡视,给予指导。
练习检测与问题延伸:
1、出示“想想做做”第一题
(1)怎样移动笔筒里的铅笔?
(2)你还有其他的方法吗?
(3)如果从第一个笔筒里拿出3枝放入第二个笔筒,再从第二个笔筒里拿出5枝放入第三个笔筒,平均每个笔筒里有多少枝?
(4)如果从第三个笔筒里拿出3枝放入第二个笔筒,再从第一个笔筒里拿出3枝放入第二个笔筒,平均每个笔筒里有多少枝?
(5)关于笔筒的三个平均数,有变化吗?为什么?
2、“想想做做”第二题
说说你是怎样做的?
3、小林参加了三场套圈比赛,下面是小林套中个数的统计:
第一次
第二次
第三次
平均成绩
小 林
12
11
10
小林第三次套中的个数是多少呢?
4、教材第97页的“你知道吗?”
5、检测:想想做做第3、4题
小组交流、汇报
根据学生解决实际问题中出现的问题,进行进一步的明确指导。
学生独立完成检测,教师巡视,给予差生适当的帮助。
课后反思或经验总结:
平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中结合实际问题(男女生套圈比赛)哪个队会获胜?要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?引导学生展开交流、思考。在学生的活动讨论中,认识到平均数能代表他们的整体情况,因此产生了“平均数”,感受平均数是实际生活的需要,也产生了学习“平均数”的需求。教学只有组织了这个过程,学生对平均数的统计意义以及作用才有比较深刻的理解,也才能在面临相类似问题时,能自主地想到用平均数作为一组数据的代表,去进行比较和分析。
另外, 我采用了小组合作,自主探究的方式让学生自己探索出求平均数的方法。一种是移多补少,一种是求和均分。然后引导学生感受到这两种方法的本质都是让原来不相同的数变的相同,从而引出平均数的概念。并在讲解方法的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。
平均数教学设计10
教学目标:
1.使学生掌握平均数的意义和求平均数的方法。
2.使学生能根据数据列出算式求平均数。
3.在教学活动中提高学生的发散思维能力。
教学重、难点:
1.重点:掌握平均数的意义和求平均数的方法。
2.难点:能根据数据列出算式求平均数。
教具、学具准备:练习本、自制统计图、米尺
教学过程:
一.谈话导入
老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)
引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?
8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)
在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)
今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。
揭示课题:平均数
二.探求新知
1.导入新课
同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。
(1)出示统计图。
(2)观察:从统计图中,你能了解到哪些信息?
(3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。
组织学生交流、讨论,然后指名回答。
一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。
二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)
教师根据学生的回答,并板书:
(14+12+11+13)÷4
=52÷4
=13(个)
“13”在这里也叫什么数?
(4)巩固提问:这里为什么要除以4?
(5)教师小结:像这样的'题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。
三.巩固提高
1.活动“数小棒,求平均数”
早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。
(1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。
(2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。
(3)根据学生的完成情况,教师小结。
2.活动:求平均身高
在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。
四.全堂小结
今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?
平均数教学设计11
以往对于平均数的概念引入,比较典型的是组织两组人数不等的比赛,在学生初步体会到比总数不公平的前提下,顺利过渡到比平均数的`环节上来。而张齐华老师的“平均数”一课,从比投篮技术的情境引入:首先出场的是小强,他1分钟投中5个球,可是他对这一成绩似乎并不满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,会同意他的要求吗?这样使学时体会到由于随机误差的存在而使得一次投球的成绩很难代表小强的真实水平,应该再给他两次机会。小强又投了两次,很巧的是后两次投篮成绩都是5个,显然是张老师精心设计的,使学生意识到用5来表示小强1分钟投中的个数最合适,避免了学生不会计算平均数的尴尬。接着小林出场,小林第一次只投中了3个球,“如果你是小林,会就这样结束吗?”从而自然引出第二组数据:3个、5个、4个。可是也引出了麻烦:三次成绩各不相同。这一回,又该怎么办?在学生思维的碰撞中,发现也用5来表示小林的成绩显然对小强来说是不公平的,学生凭直觉认为4最能代表小林1分钟的成绩,这样平均数的意义悄悄地被学生自己发现了。
张老师精巧的设计,再加上他灵活、智慧地处理生成,是课堂充满生机与活力,使我受益颇多。
平均数教学设计12
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的.应用。
教具准备
多媒体课件
教学课时
1课时
教学过程
一、情境引入。
1、出示课件:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示课件:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
平均数教学设计13
一、情境激趣,引出问题。
师:同学们,在欢庆节日的时候,我们总喜欢挂上气球,渲染出浓浓的节日气氛,今天,我们来进行一次吹气球比赛,怎么样?
生:好!
师:一、二组作一队,三、四组作一队,你们商量起个名字吧。
一、二组:我们叫希望队。
三、四组:我们叫英雄队。
师:怎么比呢?
生:两队同学都来吹,在规定的时间里,哪队吹的气球多,哪队就获胜。
师:可老师没带那么多气球来,怎么办?
生:每队选几个代表吧。
师:各选几人?
生:选两人。
师:好,各队再派两个人拿好他们吹的气球,时间为一分钟。比赛结果:希望队:4个6个。英雄队:5个3个,希望队(欢呼起来):我们赢了。
师:你们是怎么知道胜负的?
生:比总数,希望队共有10个,而英雄队一共只有8个。
师:还有别的比较办法吗?
生:从希望队的6个里拿出1个,将4个补齐5个,就正好与英雄队的5个相等,而希望队剩下的5个比英雄队剩下的3个多,所以希望队赢了。
师:你真了不起!想出了移多补少的办法。现在我正式宣布:希望队获得冠军。(希望队非常得意,齐说一声“ye”,英雄队有些不甘心。)
师:看英雄队的小华跃跃欲试的样子,就让他也来参加吹气球吧。比赛再次开始。
师:算出结果。
生:希望队共有10个,英雄队共有12个。师(热情洋溢地)宣布:英雄队获得冠军。(英雄队欢呼起来。)
希望队(_地说):不行,不行,他们队多一个人,我们队也要加一个人。
师:看来人数不相等,用比总数的方法来决定胜负是不公平的,那么怎样比较才公平呢?
生:我们队也多加人。
师:不增加人,有什么好办法吗?
二、解决问题,探求新知。
生:把希望队两个人吹的气球总数除以2,把英雄队3个人吹的气球总数除以3,再进行比较。
师:为什么?
生:这实际上是求出各队平均每人吹的气球数。
师:能列出算式吗?
生:10÷2=5(个) 12÷3=4(个)
师:哪队赢了?能说出理由吗?
生:希望队。因为希望队平均每人有5个气球,而英雄队平均每人只有4个气球,所以说希望队赢
师:英雄队虽然输了,但也不要气馁,你们课后还可以再比。
师:希望队中“5个”气球是谁吹的?
生:谁的也不是,“5个”表示平均每人吹的气球数
师:这队中最多的是几个?最少的又是几个?5个与它们相比怎么样?
生:最多的是6个,最少的是4个,5个大于4个,小于6个。
师:可见,“5个”表示的既不是希望队的水平,也不是最低水平,而是表示处在这个和最低之间的一个平均水平,咱们就把表示平均水平的这个数叫做平均数。学生归纳求平均数的方法,即:总数÷份数=平均数
三、自主探索,合作交流。
1、求出小组的平均年龄。
(1)各组同学将自己的年龄填入教师发的表格,求出小组的平均年龄。
(2)请各小组汇报,比较出年龄组和最低年龄组,估算出全班平均年龄。
2、情境判断。
(1)江宁一组的平均年龄是10岁,所以江宁一定是10岁。
(2)小青的年龄是全班最小的,所以他的年龄一定小于他们组的平均年龄。
(3)张俊一组的平均年龄是9岁,小禹一组的平均年龄是8岁,所以张俊的年龄一定大于小禹。
四、联系实际,拓展深化。
1、尝试练习。
师:课前,同学们都收集了家里拥有的.家用电器的件数,请各组同学记在分发的统计表上,并算出每组家庭平均拥有的家用电器数。
师:这是第三组同学家拥有的家用电器情况统计表,请同学们算一下,他们组平均每户家庭拥有几件家用电器。
师:从第三组中平均每户家庭拥有的家用电器件数,你想到了什么?
生:家用电器进入千家万户,人民生活水平提高了。
生:人们拥有的家用电器越来越多,耗电量也越来越大,我们要节约用电。
师:你们的想法真好,家用电器为我们带来了方便,但也消耗了大量的电力资源,节约用电要从我做起。
2、灵活求平均数。
师:同学们,我想请我们班的歌手——方瑞为大家高歌一曲,你们现场打分,满分是10分,每一组亮一个分。
师:现在有8个分,你们认为哪个分最合适呢?
生:要计算平均分。师说明在实际生活中,为了反映真实水平,有时计算平均分要去掉一个分和一个最低分,再算平均分。
生:去掉一个分10分和一个最低分7分,列式计算是:(10+10+8+9+8+9)÷4
师:方弯池塘平均水深110厘米,咱们班的小飞身高135厘米,不会游泳,如果他去那里学游泳,会不会有危险?
生:我认为小飞能去游泳,因为小飞身高135厘米,而湖水深度只有110厘米。
生:我认为小飞不能去游泳,因为湖水的平均深度是110厘米,最深处可能大于135厘米,所以小飞去游泳有危险。
五、总结评价、自布作业。
师:在这节课的学习中,你有什么收获或遗憾?你准备给自己布置什么样的作业?
生:我学会了什么是平均数,如何求平均数。
生:令我遗憾的是:生活中还有许多求平均数的问题,这节课没有做,课后我要去做一样。
生:我要求出我前几个单元的数学平
生:我要求出我们小组同学的平均身高。
反思:
本节课是把数学知识与学生的生活实际紧密联系起来,让学生去感受数学,学习数学,应用数学的一课,学生学得兴趣盎然,我也受益匪浅,认识到以下几点:
一、密切联系学生的生活实际。
数学来源于生活,又应用于生活。《数学课程标准》强调:“把数学作为人们日常生活中交流信息的手段和工具”,“人人学有价值的数学”,为此,教师要构建生活课堂,让学生在自然真实的主题活动中去“实践”数学,在实践中探索发现,感受数学的魅力。本节课中“比较两队同学吹气球的水平,计算组内同学的平均年龄,收集并计算组内同学平均每户拥有的家用电器件数,给唱歌的同学现场打、算分,情境判断等内容都与学生的生活紧密相连,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。
二、关注学生的学习过程。
新课程改革强调:“教学应当关注学生的学习过程”。本节课开始,从学生熟悉的、感兴趣的吹气球比赛入手,使他们亲身感受到人数不相等时,比气球总数不公平,在双方矛盾激化的情况下,提出“怎样比较才公平呢?”使学生产生困惑,激起探求新知的欲望,从而掀起学生积极思维的高潮,通过激烈的讨论,引出平均数的概念,进而将平均数的意义不断引向深入,使学生深刻感悟到当两队吹气球人数相等时,可以比总数或平均数,但当吹气球人数不等时,只有比较平均数才公平,突出了平均数的比较功能。情境判断题,正好激发了学生开展研究的兴趣,为学生创造了自由表达和广泛交流的机会,进一步深化了平均数的意义。
此外,适当地对学生进行了“节约用电”的教育和安全教育,实现数学教育的多重价值。
平均数教学设计14
一、复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、创设情境,自主探索
1.呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2.引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的`人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4.理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比的数小,比最小的数大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】
三、巩固深化,拓展应用
1.下面我们要利用刚才所学的关于统计和平均数的知识,解决一些实际问题。请你判断下面哪些说法是不合理的。
(1)小丽走8步,共走了560厘米,她每步都走70厘米。(70厘米表示小丽平均每步走了70厘米)
(2)电梯有8个人,她们体重的和是400千克,平均每个人的体重是50千克。(求平均数的方法)
(3)两班共栽树120棵,每班不可能超过60棵。(平均每班栽树60棵,可能一个班栽树70棵,一个班栽树50棵)
和你同桌讨论一下。
2完成“想想做做”第1题。
①从图中你知道了什么?(先数一数每个笔筒里笔的枝数)
②你想怎样求出“平均每个笔筒里有多少枝”铅笔?
③还有其他的方法吗?
学生列式计算,汇报结果。
4、完成“想想做做”第2题。
④从图中你知道了什么?②你想怎么求?
独立解答,汇报结果。
⑤说说你第一步求的是什么?第二步求的什么?
3.完成“想想做做”第3题。
学校篮球队队员的平均身高是160厘米。
李强是学校篮球队队员,他身高155厘米,可能吗?⑥你是怎么想的?
学校篮球队可能有身高超过160厘米的队员吗?
请你判断,和同桌交流你的想法。
5.完成“想想做做”第4题。
⑦仔细观察统计图,互相说说你知道了什么?指名回答第一题
⑧回答这个问题你看的是哪一张统计图?(答句说完整)
第2个问题
⑨你是怎么想的?只要看在哪一天卖出的苹果和橘子的箱数相等就可以了。
⑩请学生读第2题,你会计算吗?完成在课堂作业本上。(竖式列在草稿本上)
⑾你还能提出什么问题?(同桌讨论)
【说明:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识。】
四、课堂总结(略)
今天你学会了哪些知识?学会了求平均数的方法有2种。
五、课后拓展
小芳,小丽,小华三人在进行口算比赛。小芳说:“我是冠军,小丽是第三名。我们3人平均一分钟完成了10道口算,每人完成的数量相差一题。”你知道她们一分钟各完成了多少道口算题吗?
平均数教学设计15
导学目标:
1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。
2. 学会计算简单数据的平均数。
3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。
重 点:学会求简单数据的平均数。
难 点:理解平均数的意义。
教学资源:自制课件、彩笔及笔筒
教学过程:
一.创设情境,提出问题
1、谈话:同学们,课间休息时玩什么?
(丢沙包、踢毽子、跳皮筋、跳绳等)
课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。
男生和女生谁获胜了?怎样比较?(求总数)
2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?
你觉得男生成绩好还是女生成绩好?比什么?怎样比?
A、比男、女生的总数(质疑不公平)
B、套的最多的、最少的都是女生,不好比。
C、比男生还是女生套的准?
二.自主探索,解决问题
1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?
小组内说说自己的想法。
各组代表向全班学生汇报
本组的想法。引出平均数。即:分别求出男生、女生平均每人套中的个数。
2、求男、女生平均每人套中的个数
(1)学生演示移动条形统计图中方块,使4个男生套中的个数变得同样多。
移动女生条形统计图中方块,使5个女生套中的个数变得同样多。
动手操作移动彩笔。(说清移动方法及结果)
质疑:移动有局限性,数大或者没图怎么移?(如:求平均身高)
(2)通过计算求平均数:
求男生平均每人套中的个数。(抽生讲解思路并板书)
独立计算女生平均每人套中的个数。(抽生板书)
求丝带的平均数。(P94页2题)
求平均身高。
小结:求平均数的过程及注意事项。
三、巩固练习,拓展应用。
1、 提问:学校篮球队员的平均身高是160厘米。李强是学校篮球队队员,他身高是155厘米,可能吗?学校篮球队可能有身高超过160的队员吗?
(1)在小组内讨论。
(2)指名回答,要求说出理由。
2、河水平均深度110厘米,身高145厘米,下河游泳一定安全吗?
(1)在小组内讨论。
(2)指名回答,要求说出理由。
揭示平均数的意义:平均数表示的是一组数据的平均水平,有些数可能比平均数大,有些数可能比平均数小,有些可能和平均数相等。
四、实际应用:
1、生活中哪些地方用到平均数?
2、给本节课打分(提出对老师、同学的建议,进一步渗透平均数的应用意识。)
五.课堂总结:今天学会了什么?有哪些收获与困惑?
教学反思
用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与困惑:
收获一:情境的成功运用。课一开始,我以学生熟悉而又喜欢的运动会跳绳的录像引入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫,同时也为求平均数的方法(移多补少法)起到了迁移的作用。在例题教学中,我让学生观看了“套圈比赛”的录象,学生注意力特别集中,兴趣盎然,既而我抛出一个实质的问题:是男生套的准还是女生套的准?一石激起千层浪,学生们议论纷纷,有的认为男生组,有的认为女生组,学生各抒己见,各自发表了自己的意见?然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理。当学生感受到要比较谁套得更准一些必须先求出“男、女生平均每人投中的个数”后,我并没有急着让学生讨论或者讲解“平均每人套中个数”的含义,而是让学生用移一移,画一画的,或者用计算的`方法求出平均数。在此,我把思考的权利交给学生,不交流的权利还给学生,让学生充分感受所学知识的价值。
收获二:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材,如:第一题是对平均数的理解;第二题是对平均数的应用,第三题是对平均数的深化认识。这三道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。这样的教学实现了数学教育的多重价值,使各学科起到了有效的整合作用。
但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!
【平均数教学设计】相关文章:
平均数教学设计03-08
《平均数》教学设计04-18
小学数学《平均数》教学设计06-24
平均数教学设计15篇06-21
平均数教学设计(15篇)06-21
《平均数》教学设计15篇06-10
《平均数》教学设计(15篇)06-10
(推荐)平均数教学设计15篇10-18
平均数教学设计通用15篇06-21