《反比例》教学设计

时间:2024-10-11 17:06:44 教学资源 投诉 投稿

《反比例》教学设计

  在教学工作者实际的教学活动中,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。我们应该怎么写教学设计呢?以下是小编整理的《反比例》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《反比例》教学设计

《反比例》教学设计1

  学习目标 :加深对正比例意义的理解,能正确判断两个相关联的量是不是成正比例。

  学习重点 :进一步掌握正比例的意义。

  学习难点: 能正确判断两个相关联的量是不是成正比例。

  教学过程:

  一、温故互查:

  1、正比例的意义是什么?

  2、如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一

  定),正比例关系可以怎样表示?

  3、齐读正比例儿歌。

  二、自学感悟:

  “想一想”

  (1)正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  (2)父子的年龄成正比例吗?为什么?

  三、合作交流:

  在组内交流以上问题的解决过程。

  四、展示点评:

  正方形的周长随边长的变化而变化,并且周长与边长的比值都是

  4,所以两个量成正比例;正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以两个量不成正比例。

  虽然乐乐岁数增加,爸爸岁数也增加,但是乐乐岁数与爸爸岁数的比值不是一个确定的值,所以父子的年龄不成正比例。

  五、巩固练习:

  判断:

  (1)减数一定,被减数和差成正比例。

  (2)三角形的底一定,三角形的面积和它的高成正比例。

  (3)成正比例的两个量,一种量扩大,另一种量也随着扩大。

  六、拓展延伸:

  找一找生活中成正比例的例子,并与同伴交流。

  板书设计:

  正比例

  y =k(一定)x

  教学反思:

  我认为本节课最大的特点便是提供了丰富的材料,选择了师生互动,以教师的“引”为主导,学生为主体,呈现给学生丰富的感性材料,让学生在互动交流中去理解成正比例的量这一概念。

  3、画一画

  学习目标:

  1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  3、利用正比例关系,解决生活中的一些简单问题。

  学习重点: 在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  学习难点: 利用正比例关系,解决生活中的一些简单问题。 教学过程:

  一、自主尝试:

  判断下面的量是否成正比例关系?

  1、每行人数一定,总人数和行数。

  2、长方形的长一定,宽和面积。

  3、长方体的底面积一定,体积和高。 4、分子一定,分母和分数值。

  5、长方形的周长一定,长和宽。

  6、一个自然数和它的倒数。

  7、正方形的边长与周长。

  8、正方形的边长与面积。

  9、圆的半径与周长。

  10、圆的面积与半径。

  11、什么样的两个量叫做成正比例的`量? 二、合作探究:

  小组合作完成课本44页例题重点找出正比例图像的特征。 三、汇报点评:

  小组汇报,集体点评。

  四、归纳总结:

  1、表示成正比例关系的两个相对应量中的各点在同一直线上,即正比例关系的图像是一条经过原点的直线。

  2、从图像中可以直观看到两种量的变化情况。

  五、巩固练习:

  完成课本45页“练一练”第1、2、题

  六、拓展延伸:

  完成课本45页“练一练”第3题

  板书设计:

  画一画

  正比例关系的图像是: 一条经过原点的直线。

  教学反思:

  在本节课教学设计中我本着以下几个要求:1、正比例是研究两个量之间的一种关系。2、知道正比例是一种怎样的图像。3、我们为什么要认识正比例图像在利用图像解决问题这一环节,我着重让学生利用图像解决一个又一个问题中体会认识正比例图像的好处,从而使学生充分感受到我们所学的知识是与我们的生活密切相关的。

  4、反比例

《反比例》教学设计2

  一、教学内容:

  反比例。(教材第47页例2)。

  二、教学目标:

  1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

  2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

  三、重点难点:

  引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

  四、教学准备:

  投影仪。

  五、教学过程:

  (一)复习导入

  1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?

  (1)每公顷产量一定,总产量和公顷数。

  (2)一袋大米的重量一定,吃了的和剩下的。

  (3)修房屋时,粉刷的面积和所需涂料的数量。

  2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

  教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

  (二)目标解读:

  1、学生认真度学习目标。

  2、理解目标。

  (三)自主预习:

  理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。

  (四)检查预习。

  (五)合作探究

  活动一:

  1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。

  请学生认真观察表中数据的变化情况,组织学生分小组讨论:

  (1)水的高度和底面积变化有关系吗?

  (2)水的高度是怎样随着底面积变化的?

  (3)水的高度和底面积的变化有什么规律?

  2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300

  3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

活动二:

  1、归纳反比例的意义。

  像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  2、用字母表示。

  如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)

  3、生活中还有哪些成反比例的量?学生举例说明。如:

  (1)大米的质量一定,每袋质量和袋数成反比例。

  (2)教室地板面积一定,每块地砖的面积和块数成反比例。

  (3)长方形的面积一定,长和宽成反比例。

  活动三:

  1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?

  学生交流、汇报后,引导学生归纳:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一定。

  2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

  反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业

  1、教材第48页的“做一做”。

  2、教材第51页第9、10题。课堂小结

  说一说成反比例关系的量的变化特征。

  (六)当堂检测:

  1、完成练习册中本课时的练习。

  2、教材51~52页第8、14题。

  (七)总结归纳:

  反比例

  两种相关联的量

  变化

  xy=k(一定)

  积一定

  学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。

  请学生认真观察表中数据的变化情况,组织学生分小组讨论:

  (1)水的高度和底面积变化有关系吗?

  (2)水的高度是怎样随着底面积变化的?

  (3)水的高度和底面积的变化有什么规律?

  发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)

  教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的'变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

  2、归纳反比例的意义。

  组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。

  教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  3、用字母表示。

  如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)

  4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:

  (1)大米的质量一定,每袋质量和袋数成反比例。

  (2)教室地板面积一定,每块地砖的面积和块数成反比例。

  (3)长方形的面积一定,长和宽成反比例。

  5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。

6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

  反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

课堂作业

  1、教材第48页的“做一做”。

  2、教材第51页第9、10题。

  课堂小结

  说一说成反比例关系的量的变化特征。

课后作业

  1、完成练习册中本课时的练习。

  2、教材51~52页第8、14题。

  反比例教学反思

(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。

  周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。

  首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。

最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。

《反比例》教学设计3

  教学目标

  知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

  2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

  3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

  过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

  情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

  教学重点

  教学难点 1) 重点:画反比例函数图象并认识图象的特点.

  2)难点:画反比例函数图象.

  教学关键 教师画图中要规范,为学生树立一个可以学习的模板

  教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式

  教学手段 教师画图,学生模仿

  教具 三角板,小黑板

  学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法

  教学过程

  (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

  内 容 设计意图

  一:课前检测:

  1.什么叫做反比例函数;

  (一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)

  2.反比例函数的定义中需要注意什么?

  (1)k为常数,k0

  (2)从y= 中可知x作为分母,所以x不能为零.

  二:激发兴趣 导入新课

  问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?

  y=kx+b y=kx

  K0 一、二、三 一、三

  b0 一、三、四

  K0 一、二、四 二、四

  b0 二、三、四

  问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?

  可以

  问题3:画图象的步骤有哪些呢?

  (1)列表

  (2)描点

  (3)连线

  (教学片断:

  师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

  生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

  生:我知道反比例函数的解析式为 且k不等于0

  生:我知道反比例函数的图象是曲线。

  师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

  生:该研究反比例函数图象和性质了。

  师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

  三:探求新知

  学生思考、交流、回答。

  提问:你能画出 的图象吗?

  学生动手画图,相互观摩。

  (1) 列表(取值的特殊与有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  议一议

  (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

  (2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

  (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

  (4)曲线的发展趋势如何?

  曲线无限接近坐标轴但不与坐标轴相交

  学生先分四人小组进行讨论,而后小组汇报

  做一做

  作反比例函数 的图象。

  学生动手画图,相互观摩。

  想一想

  观察 和 的图象,它们有什么相同点和不同点?

  学生小组讨论,弄清上述两个图象的异同点

  相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

  不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

  四:归纳与概括

  反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。

  (1) 当 k0 时,两支曲线分别位于第___、___象限,

  (2) 当 k0 时,两支曲线分别位于第___、___象限.

  五:课堂练习

  (1)

  (2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;

  六:形成性检测

  (1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________

  (2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )

  (A) (B) (C) (D)

  (3)画 和 的图象

  七:反馈拓展

  在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

  八:作业布置

  (1) 作反比例函数y=2/x,y=4/x,y=6/x的图象

  (2) 习题5.2.1

  (3)预习下一节 反比例函数的图象与性质II

  复习上节主要内容

  (3分钟)

  (5分钟)

  运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

  由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的'问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

  数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

  数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

  (12分钟)

  引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.

  在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

  注:(1)x取绝对值相等符号相反的数值

  (2) x取值要尽可能多,而且有代表性

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

  (3分钟)

  此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

  (5分钟)

  活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

  (4分钟)

  培养学生归纳,语言表达能力

  此中注意分类讨论思想的应用

  巩固反比例函数图象性质

  (2分钟)

  与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

  (5分钟)

  这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

  (4分钟)

  此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

  (1分钟)

  巩固作反比例函数图象的步骤,预习下一节课内容

  教学反思与检讨:

  本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

  由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

  在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

  反比例函数的图象与性质

  一:画出 的图象

  (1)列表(取值的特殊与有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  注:(1)x取绝对值相等符号相反的数值

  (2)x取值要尽可能多,而且有代表性 三:练习

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  二:反比例函数的图象y = 是由两支曲线组成的。

  (1) 当 k0 时,两支曲线分别位于第一、三象限,

  (2) 当 k0 时,两支曲线分别位于第二、四象限.

《反比例》教学设计4

  [教材内容]

  义务教育课程标准实验教科书数学六年级下册第三单元第60页例6用反比例解决问题。

  [教学对象]

  小学六年级学生

  [教材分析]

  这类问题学生在前面实际上已经接触过,只是用归总的方法来解答,这里主要学习用反比例知识来解答。前一个例题是用正比例解决问题,学生已基本掌握用正比例解决问题的思路与方法。用正、反比例知识解答正、反比例的问题的关键是使学生能够正确找出两种相关联的量,判断它们成哪种比例,然后根据正比例或反比例的意义列出方程。所以在教学前可以先给出一些数量关系,让学生判断成什么比例,依据什么判断的。本节课还要注意正、反比例解决问题的对比。本节课的学习能使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,巩固和加深对所学简易方程的认识,也为中学数学应用比例知识解决一些问题做较好的准备。

  [学情分析]

  这类问题学生在以前学过,都会用归总的方法解答。在本单元的学习中,学生也学会了判断两种相关联的量成哪种比例,前一个例题中也学习了用正比例解决问题。但学生对于判断成正、反比例的量的知识掌握得不够好,主要是部分学生对数量关系的理解能力比较弱。当用正、反比例解决问题同时出现时就会有的学生不理解,容易混淆。有的学生也会受比例的知识的影响列出多种比例的式子从而对这部分知识理解得有点乱。所以在教学中可以通过以旧引新,运用知识迁移,利用学生归总方法的知识掌握得较好的优势来学习用反例解决问题的知识,相信会有较好的效果。

  [课类型]新授课

  [学习目标]

  1.能正确判断应用题中涉及的量成什么比例关系,能利用反比例的意义正确解答应用题。

  2.经历用比例方法解决问题的过程,体验解决问题的策略,提高解决问题的能力,渗透数学模型思想。

  3.体验解决问题的成功喜悦。

  [学习重点]能利用反比例的意义正确解答应用题。

  [学习难点]能正确利用反比例的关系列出含有未知数的等式。

  [学习方法]自主学习、探究学习、合作交流

  [教学手段]多媒体课件、导学案

  [学习过程]

  一、自学。

  (一)忆一忆。(约3分钟)

  1.判断下面各题中的两个量成什么比例。

  (1)速度一定,路程和时间成( )比例。

  (2)路程一定,速度和时间成( )比例。

  (3)总价一定,买水果的数量和总单价成( )比例。

  (4)运货的总量一定,汽车的载重量和运的次数成( )比例。

  2.在横线上补充问题,再回答下面的问题:

  一批书每包20本,捆了18包。 ?

  ① 题目已知哪两个相关联的量?这两个相关的量有什么数量关系?

  成什么比例关系?已知这两个条件可以求出什么?

  ② (用算术法)列式计算:

  [设计意图:复习找两个相关联的量及判断这两个量成哪种比例关系,分析已知条件的数量关系,用归总的方法解决问题,为本节学习用反比例解决问题作铺垫作用。引出生活中的数学问题,使学生体会数学在生活中的应用。]

  (二)学一学。(课中约3分钟)

  1.课前预习:看书P60例6。

  例6

  张叔叔 李阿姨

  (1)题中已知 , 求 。

  (2)试一试:用我们以前学过的方法解决问题:

  (3)这样的问题还可以用比例的方法解决:

  ① 题中有哪两种相关联的量?

  ② 这两种量之间存在什么数量关系?

  ③ 这两种量成什么比例关系?你是根据什么判断的?

  答:因为( )一定,所以题中的( )和( )成( )比例,也就是说,( )和( )的( )相等。

  ④ 根据这样的比例关系,你能列出等式吗? ⑤ 试一试用比例解决问题:(温馨提示:注意格式)

  ⑥ 怎样检验?

  2.课中自学(3分钟)

  (1)看书P60例6。

  (2)想一想:题中有哪两种相关联的量?成什么比例关系?有什么相等关系?根

  据这种比例的意义列出怎样的方程?

  (3)把你做的方法与书上例题比一比,你的解答和格式对吗?

  (三)归一归:

  1.比一比例5和例6:有什么相同点和不同点?

  2.归一归:用比例解决问题的一般步骤是怎样的?

  [设计意图:数学新课程标准指出“学生学习是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学生

  数学的重要方式”。以学案导学,引导学生分析数量关系,回顾旧知,寻求解决问题的思路与方法。再引导学生找出题中相关联的量及判断成哪种比例关系,以前一个例题学过的用正比例解决问题的经验自主探究,寻求用反比例解决问题的思路与方法。引导学生学会自主学习,充分发挥学生学习的主动性。]

  二、自教。

  (一)小组交流:(约3分钟)

  交流课前预习部分,小组长注意了解同学们的主要疑问是什么?有错的同学错在哪?

  (二)全班展示:(约10分钟)

  1.展示例6用以前学过的方法解答的思路。

  学生点评、质疑,教师评价小结:已知每份数和份数可以用乘法求出总数,两种包装方法的总数不变,先用乘法求出总数再用除法求出另一种包装方法的包数。

  2.展示用比例方法解决问题的思路:

  学生点评、质疑,教师小结:每份数和份数存在的数量关系是每份数×份数=总数,总数不变,即积一定,根据反比例的意义列出方程。

  小结:解题的关键是什么?答:找出两个相关联的量,判断是什么比例,根据比例的意义列出方程。

  3.对比例5和例6找出用正、反比例解决问题的一般步骤与异同。(5分钟) 追问:用正比例解决问题与用反比例解决问题有什么相同点和不同点?

  用正、反比例解决问题的一般步骤是怎样的?

  (三)同步检测:(用比例方法解答)(约2分钟)

  学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

  小结方法:找出两个相关联的量,判断什么比例列出方程。

  [设计意图:数学新课程标准指出“学生学习是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是

  学生数学的重要方式”。引导学生通过小组交流、全班交流的合作学习、探究学习的'方式,经历“尝试——理解——总结——应用”的过程,建立数学模型的过程,掌握用比例知识解决问题的思路与方法,为学生形成有序的思考方式起潜移默化的作用。在教学中教师运用已学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求用正、反比例解决问题的一般方法,培养学生的应用意识,提高学生解决问题的能力,从而渗透了数学建模思想。

  通过展示交流提高学生的自信心与自学、表达能力,以追问交流的方式引导学生深入思考,渗透解决问题的一般步骤与策略,发展学生的思维能力。]

  三、自编:(5分钟)

  编两组对应的成反比例的量,再进行互评、互改。

  [设计意图:开展一对一帮扶学习,发挥小组长的作用,对学生进行及时的反馈和指导,以“兵教兵”的方式关注课堂中的每一个学生。目的是使每一个学生都能准确判断成反比例的量。]

  四、自演。(约10分钟)

  1.判断下列各题的两种量成什么比例。

  (1)从甲地到乙地的路程一定,每小时所走的路程和所用的时间。( )

  (2)全班的总人数一定,列队时每行的人数和行数。 ( )

  (3)铺地的面积一定,每块砖的面积和块数。 ( )

  2.有一堆煤,每天用15吨,可以用40天,如果这堆煤要用60天,每天只用多少吨?(用比例方法和算术法两种方法解答)

  3.比一比:两题有什么相同点和不同点?

  (1)一个客厅,用9cm2的方砖铺地,需要112块,如果改用16cm2的方砖铺地,需要多少块?

  (2)给一间房子铺地,如果用边长6dm的方砖,需要80块。如果改用8dm的方

  砖需要多少块?

  4.拓展练习:

  一辆汽车从甲地到乙地每小时行60千米,4小时可以到达。实际前2小时行100千米,照这样计算,行完全程共需多少小时?(用正反比例两种方法解答)

  [设计意图:设计判断题的目的是为了提高学生判断两个相关联的量成哪种比例关系的能力;设计解决问题要求用两种方法解决与对比练习目的是检测学生是否能正确地用反比例的知识解决简单的实际问题和能否掌握新旧知识的联系与区别形成知识系统。设计拓展练习的目的是检测学生能否掌握用正、反比例解决问题的联系与区别,提高学生解决问题的能力,发展学生的思维。]

  五、反思总结。(约3分钟)

  独立思考——小组交流——全班交流:

  本节课你学到了什么?用比例解决问题的解题关键是什么?解题的步骤是什么?用反比例解决问题与用正比例解决问题有什么相同点和不同点?

  全课总结:用比例知识解答应用题的关键,是正确找出题中的两( )的量,并判断这两种相关联的量成( )比例关系,然后根据( )比例的意义列出比例。

  [设计意图:课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。]

  六、达标检测。(约2分钟)

  一间房子,用边长5dm的方砖铺地,要108块。如果改用边长6dm的方砖铺地,需要多少块?

  [设计意图:检测学生对本节基础知识的掌握情况,起当堂反馈的作用。]

  七、板书设计:用反比例解决问题 反比例

  每包20本,要捆18包。 (总量一定)

  每包30本,要捆多少包?

  相等关系:每包30本×包数=每包20本×18包 算术法:

  解:设要捆χ包。 20×18÷30

  30χ=20×18 =360÷30

  χ=12 =12(包)

  答:要捆12包。

  [教学反思]

  1.导学案的设计能发挥导学的作用。

  以学案导学,设计具体的学习内容与问题,引导学生去分析问题、独立思考、寻求解决问题的策略,能提高学生的自学能力,自主建立用比例解决问题的知识体系,能有效地发挥导学的作用。

  2.能引导学生自主探索、合作交流。

  新课程标准中指出:“有效的数学学习活动不能单纯地依赖模仿和记忆。动手实践、自主探索与合作交流是学生自主学习的重要方式。”在教学中,教师向学生提供充分从事数学活动的机会,使学生在自主探索与合作交流、全班大展示的过程中,自始自终让学生参与体验解决问题的全过程。注意引导学生围绕解决问题的核心进行探索、思考,取得了良好的教学效果。学生通过自主探究和合作交流,根据教师设问与引导开展深入思考与讨论,很快掌握了用比例解决问题的方法。

  3. 相信学生,让小组合作学习发挥小课堂的作用。

  “相信学生,利用学生,放手发动学生,发展学生,课堂因互动而精彩,学生因自主而发展”这些都是杜郎口中学提倡的学生观。我放手让学生去自主探索、合作交流,在自学、自教的环节处理中,我指导小组长进行互教与辅导,引导小组长充当小老师,把每个小组看作一个小课堂,而组长就是这个小课堂中的老师,学生在互动中学习,在互动中发展,如班上逐渐显示出一些优秀的小组和优秀的小组长,他们能引导本组同学去思考、去学习,指导方法,发现组员在学习中存在的问题进行分析与辅导,整个学习过程中学生认真参与、投入学习,在这些小组中,整个小组的同学能忘我地投入学习,做到了全程参与。

  4.在解决问题时,有意识地引导学生运用数学思想方法。

  渗透数学思想方法旨在使学生的数学思维经历从形象思维到抽象思维再到逻辑思维的发展过程,实现其质的变化,要让学生沿着“抽象”和“应用”两个方面进行渗透,将已学的思想方法转化为自己头脑中牢固的认知结构,并能在不断的归属同化中得以发展,提高学生运用数学思想方法解决实际问题的能力。在本节教学中教师可运用已学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求用正、反比例解决问题的一般方法,培养学生的应用意识,提高学生解决问题的能力。

  5.不足之处:

  在实际的教学中,让学生讲述理由、叙述解题思路的机会还不够,面不够广,从而造成部分学生只是模仿例题列比例解答,但解答的依据却说不清,也有部分学生对题中如何寻找相关联的量和正确判断是哪种比例关系不熟练。在今后的解决问题教学中仍要加强解决问题的思路与策略的渗透,还要加强训练学生表述解题思路与方法的能力。

《反比例》教学设计5

  一、教学内容

  人教版六年制第十二册第42~43页的内容。

  二、教学目标

  (一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。

  (二)根据反比例的意义,正确判断两种量是否成反比例。

  (三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

  三、教学难点

  正确判断两种相关联的`量是否成反比例。

  四、教学过程

  (一)情境导入

  1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)

  2.学生对上述问题发表意见。

  3.师:今天,我们就来研究这种类型的问题。

  [设计意图:选取学生身边的生活实例引入新课,吸引学生的注意力,激发学生的探究欲。同时为新知的学习埋下伏笔,营造了一种轻松活泼的学习氛围。]

  (二)探索新知

《反比例》教学设计6

  【教材分析】

  本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。

  【教学目标】

  1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;

  2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;

  3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。

  【教学重点】掌握反比例的意义。

  【教学难点】有条理地思考、判断成反比例的量。

  【教学准备】多媒体课件

  【教学过程】

  一、联系生活,导入新课

  1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?

  (结合回答板书:相关联、比值一定、y/x=k<一定>)

  2、判断下表中的两种量是否成正比例,为什么?

  表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。

  表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。

  表3:不成正比例。数量和单价的比值不是一定的。

  二、自主合作,探究发现

  1、设疑引入(购买笔记本问题)

  (1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。

  (2)四人小组合作研究:

  1、观察表格中的两个量有什么变化?

  2、这种变化有什么规律?

  3、这种规律与成正比例的量的规律有什么不同?

  (3)全班交流。

  1、观察表格中的两个量有什么变化?

  单价变化(扩大),数量也随之变化(缩小)

  2、这种变化有什么规律?

  这两个量的乘积总是一定的。

  板书:单价×数量=总价(一定)

  指出:都是用60元购买笔记本

  3、这种规律与成正比例的量的规律有什么不同?

  ①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。

  ②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。

  (4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?

  请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。

  (5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)

  单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。

  这就是我们今天要认识的成反比例的量。(揭示课题)

  2、试一试

  师:我们继续来学习反比例,请看大屏幕:

  (1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。

  然后指名口答,全班校对。

  (2)同桌合作讨论(出示要求)

  算一算:相对应的两个数的乘积各是多少?

  想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

  说一说:每天运的吨数和需要的天数成反比例吗?为什么?

  (3)全班交流。

  算一算:相对应的两个数的'乘积各是多少?

  (乘积都是72)

  想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

  (这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书)

  说一说:每天运的吨数和需要的天数成反比例吗?为什么?

  (略)

  3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)

  4、用字母式子表示反比例的意义。

  教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?

  根据学生回答,教师板书:x×y=k(一定)

  三、巩固应用,深化发展

  1、完成“练一练”

  让学生判断每袋糖果的粒数和装的袋数是否成反比例。

  (1)出示题目和要求

  (2)把自己的想法和同桌互相说一说

  (3)再全班交流、评议。

  2、根据情况选择完成练习十三第6题

  出示题目,学生独立思考后依次交流3个问题

  3、根据情况选择完成练习十三第7题

  (1)出示题目

  (2)学生独立思考

  (3)全班交流、评议。

  4、判断下面每题中的两个量,哪些成反比例?

  (1)用同样多的钱购买不同的笔记本的单价和数量。

  (2)一个人的年龄与体重。

  (3)长方形的面积一定,长方形的长与宽。

  (4)长方形的周长一定,长方形的长与宽。

  (5)X和Y是两种相关联的量。(机动)

  X×Y=5 5×X=Y

  四、全课总结,拓展延伸

  今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。

《反比例》教学设计7

  教学目标:

  1、使学生能正确判断应用题中涉及的量成什么比例关系。

  2、使学生运用正、反比例的意义正确解答应用题。

  3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

  教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

  教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

  教学准备:课件

  教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

  一、铺垫孕伏,建立表象

  1、判断下面每题中的两种量成什么比例关系?

  ○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )

  ○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间

  ○5全校学生做操,每行站的人数和站的行数

  2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

  指名学生口答,老师板书。

  二、创设情境,探究新知

  从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

  1、教学例1

  (1)出示例1(课件演示)让学生读题

  一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

  师:你用什么方法解答,给大家介绍一下如何?(自由回答)

  (提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

  学生解答如下几种:

  解法一:140÷2×5=70×5=350千米

  解法二:140×(5÷2)=140×2.5=350千米

  如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

  A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

  B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

  C它们有什么关系?(行驶的路程和时间成正比例关系)

  D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。

  教师板书:速度一定,路程和时间成正比例。

  师追问:两次行驶的路程和时间的什么相等(比值相等)

  解法三:(用比例方法,怎样列式)

  解:设甲乙两地间的总路长X千米

  140 X 或 140:2=X:5

  2 5 2X=140×5

  X=350

  答:甲乙两地之间公路长350千米。

  小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

  2、怎样检验这道题做得是否正确呢?

  3、变式练习改编题

  出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

  4、教学例2(课件演示)

  (1)出示例2,学生读题

  例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

  提问:

  (1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

  (2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  学生利用以前的方法解答。

  70×5÷4=350÷4=87.5(千米)

  (3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

  这道题里的'路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。

  指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

  (4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

  4X=70×5 X=70×5/4 X=87.5

  答:每小时行驶87.5千米。

  师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

  B)题中哪一种是固定不变的?从哪里看出来?

  C)它们有什么关系?

  D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。

  (5)变式练习(改编题)

  出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

  解:设需要x小时到达

  87.5x=70×5 x=4

  答:需要4小时到达。

  三、归纳总结,揭示意义

  想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

  指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

  四、巩固练习,考考自己(课件演示)

  请你们按照刚才学习例题的方法去分析,只要列出式子就行。

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

  3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?

  (2)王师傅4小时生产了200个零件,照这样计算 ?

  4、四选一,每题只能选一次

  (1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

  a.150×30=1200x b.30:150=1200:x

  c.150x=30×1200 d.150:30=1200:x

  (2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

  a.60×8=3x b.60:8=3:x

  c.60×8=(8-3)x d.3:x=8:60

  (3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

  a.5×40=480x b.5:40=x:480

  c.40x=5×480 d.40:5=x:480

  (4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

  a.24×5=6x b.24:5=6:x

  c.(24+6)x=24×5 d.(24+6):x=24:5

  (5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

  a.3×75%=2x b.75%:3=2:x

  c.75%x=2×3 d.3:75%=2:x

  五、分层练习,深化新知

  ○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

  ○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

  12×30=(12+6)×X

  ○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

  120×28=(120+20)×X

  六、全课总结,温故知新

  解比例应用题的一般步骤是什么?(学生自己用语言叙述)

  一般方法和步骤:

  1、判断题目中两种相关联的量是成正比例还是反比例;

  2、设未知量为x,注意写明计量单位;

  3、列出比例式,并解比例式;

  4、检查后写出答案;

  5、特别注意所得答案是否符合实际。

  七、课后反馈,挑战难题

  小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

  “计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

  小明需要你的帮助,你会怎样编题?

《反比例》教学设计8

  教学目标:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

  教学难点:利用反比例的意义,正确判断两个量是否成反比例.

  教法:自主探究,合作交流。

  学法:小组合作交流。

  教具:课件。

  教学过程:

  一、定向导学(5分).

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

  2、成正比例的量有什么特征?(口答)

  3、出示学习目标

  1、理解反比例的意义,能根据反比例的意义。

  2、正确的判断两种量是否成反比例。

  二、自主学习(15分).

  1、自学课本p47例2。

  思考:

  a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?

  b、水的高度是随着( )的变化而变化 ,水的高度越( )杯子的底面积就越( )。

  c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?

  d、这个积表示( )表示它们之间的数量关系式是( )。

  (2)从中你发现了什么?这与复习题相比有什么不同?

  a、学生讨论交流。

  b、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的'乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

  三、合作交流(6分)

  1、成反比例的量应具备什么条件?

  2、数学书第48页的做一做,学生独立完成,集体订正。

  四、质疑探究(4分)

  举出生活中反比例关系的例子

  五、小结检测(4分)。

  1、说说反比例的意义,如何判断两种量是否成反比例。

  2、检测

  判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  3、第51页8题

  4、第51页9题

  六、堂清 (6分)

  p51练习九第10、11、12题。

  板书设计:

  成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  用字母表示: x×y=k(一定)

《反比例》教学设计9

  教学目标:

  1、学生能通过表和图读出其中反映的数学信息。通过具体丰富的实例结合图,感知两个成反比例量满足的条件。

  3、能根据反比例的意义,判断两个相关的量是不是成反比例。

  教学重点:

  理解反比例的意义。

  教学难点:

  正确判断两种量是否成反比例。

  教学用具:

  电脑课件

  教学过程:

 一、创设情境,复习引入

  填空

  ()*()=路程

  ()*()=总价

  每杯果汁质量○杯数=果汁总质量

  底面积○高=圆柱体积

  师:在前几节课里我们已经学过两个量之间可以成正比例的关系,现在就请你判断判断下面的情况。

  师小结:判断两个量是否成正比例首先要一个量在增加,另一个量也在增加一个量减少另一个量也在减少而且这两个量的比值要相同。我们就说这两个量成正比例。

  二、探究新知。

  师:我们已经学习了正比例,同学们来猜猜我们今天可能要学习什么新知识呢?(生答:反比例)

  课件出示:反比例(师同时板书:反比例)

  师:同学们说得很好,我们今天就一起来研究什么是反比例。

  1、加法表

  出示:加法表

  师:请同学们观察这个表,你能看懂这个表吗?把你看到的说给大家听听。(如果生不能回答,师可以问得更细:这个表横着的这一行数是什么?竖着的这一列数是什么?中间的这些数呢?)(指定两个数提问)

  师:这里的18是哪两个加数的和?23呢?(生回答)演示:

  1、(1)在加法表上,把和是12的方格圈起来

  师:和是12时,哪个量随着哪个量的变化而变化?是怎么变化的? 演示圈和是12

  师:请同学们认真观察说说把这些和是12的圈依次用线连接起来成为一个什么图形?

  出示:生回答的同时出示:可连成一条直线。

  师:这条直线表示的是什么和什么之间的关系?(生回答:加数与加数之间的关系)

  2、乘法表

  出示:乘法表

  师:这是什么表?(生回答)

  师:你会看这个表吗?把你看到地说一说。(请生回答)108在这里表示什么意思?

  演示:

  (2)在乘法表上,把积是12的方格圈起来

  演示圈积是12

  师:积是12时,哪个量随着哪个量的变化而变化?怎么变化的?

  师:把这些积是12的连起来可以成一个什么样的图形?

  出示一条曲线,生回答后出现字幕。

  师:这条曲线图表示的是什么与什么之间的关系?

  师总结:现在我们回过头来对比一下两个表:

  3、第一个加法表中的这条直线图表示和怎么样?(和一定)什么与什么的关系?(加数和加数的'关系)

  4、第二个乘法表中的这条曲线图表示积怎么样?(积一定)什么与什么的关系?(乘数与乘数的关系)

  出示:思考:第(1)和第(2)中的两个变化关系相同吗?

  师:观察这两个图,你觉得他们的变化关系相同吗?你是从哪里看出来的?(只需要学生回答到不相同就行。如果有孩子回答相同,师追问:哪儿相同?哪儿不同?)

  5、探究例2。

  师:春天来了,王叔叔打算去爬爬青城山,他有3种不同的交通工具可以选择。

  出示三种交通工具图。

  师:分别是哪三种交通工具?

  出示:王叔叔要去游青城山。不同的交通工具所需时间如下,请把下表填完整。(及表格)

  师:你能看懂这个表吗?表中出现了哪几个量?上面这一排数表示的是?下面这一排数呢?(请生回答)现在请同学们在书上独自完成表格。(生独自完成)

  师:请你汇报答案,并说说你是怎么计算的。(生汇报)

  师:现在我们把这个表制成图来看看。

  出示:师:从图中你发现了什么?(生思考后说他发现的)

  (生的回答需要说到:

  1、一个量随着另一个量的变化而变化。

  2、是怎么变化的?

  3、在变化过程中什么不变?)

  师:我们把刚才同学们发现的做一下总结。

  出示:路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。(生齐读)

  6、究例3

  师:王叔叔去青城山,怕口渴他带了600毫升的果汁打算把这些果汁和他的朋友们一起分享。

  出示:

  3、有600毫升果汁,可平均分成若干杯。请把下表填完整。

  师:完成的同学请汇报答案。(请生汇报,师出示正确答案)

  师:现在我们把这个表也制成图来看看。

  师:从图中你发现了什么?请与同桌说一说。(生讨论)

  师:说一说你的讨论结果。(只要正确的就给予肯定)

  师:你们能像刚才的练习二那样完整的总结吗?(生总结,教师给予补充,多请几位学生汇报)

  出示:果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。(生齐读)

  师:我们回顾一下刚才我们绘出的4幅图,如果让你来把它们分分类,你会怎么分?为什么?

  出示:四幅图(生回答他的分法)

  师:同学们把这三幅图分为一类,那我们来看看这三幅图。

  出示成反比例的三幅图。

  师:刚才我们总结出来了从这三幅图中观察到的变化关系。出示:一个乘数增加,另一个乘数减小;一个乘数减小,另一个乘数增加,而且两个乘数的积一定。

  路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。

  果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。

  师和学生一起读后教师总结:我们就说,这两个乘数成反比例。我们就说,速度和时间成反比例。

  我们就说,分的杯数和每杯的果汁量成反比例。

  师:我们已经看了三个成反比例的例子,谁来总结一下什么情况下成反比例呢?(生回答到哪一点师就在黑板上出示哪一点)最后完成板书。

  板书出示:一个量增加,另一个量在减少;一个量在减少,另一个量在增加,而且两个量的乘积一定。

  师:实际上我们还可以用式子来表示反比例的关系。比如在乘法表中我们可以用一个乘数*另一个乘数=积(一定)速度*时间=路程(一定),分的杯数*每杯果汁量=果汁总量(一定)

  如果我们用字母x和y表示两种相互关联的量,用k表示他们的积,反比例就可以用一个概括式来表示:

  师:请你在你的听算本上写出。(让学生在听算本上写出他的反比例表达式)(请几位生叙述)

  出示:xy=k(一定)

  三、巩固应用,内化提高

  1、练习“练一练”1题

  课件出示“练一练”1题

  师引导:已知什么?题目要求回答什么?

  师:请同学们独自填空,并思考后面的问题。(生独立完成后汇报答案及问题,回答时要求完整,可多由一些学生回答)

  2、补充练习:判断下面每题中的两种量是不是成反比例,并说明理由

  (4)平行四边形的面积一定,它的底和高。

  (5)被减数一定,差和减数。

  3、课后思考题

  课件出示:课后思考并和同学说一说:下面各题中的两个量是否成反比例,请你说明理由。

  1、五一班人数一定,每组的人数和组数。

  2、被除数一定,除数和商。

  3、一条绳子的长度一定,剪去的部分和剩下的部分

  四,回顾整理,反思提升

  这节课有哪些收获?

《反比例》教学设计10

  教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

  教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

  教学目标

  1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

  难点:运用比例的`知识解决一些简单的实际问题。

  课前准备课件。

  教学流程设计意图

  一、比的知识:

  1.举例说说什么是比?什么是比的基本性质?

  2.说一说用比的知识可以解决哪些实际问题。

  3.完成教科书第83页“练习与实践”。

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  二、比和分数、除法的联系

  出示:a∶b=()÷()=(b≠0)

  1.先填空,再说说这样填的根据是什么?

  2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3.练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

  (2)填空:

  =()÷()=()∶()

  (填好后展示学生不同的结果。)

  三、比例的知识

  1.什么是比例?

  2.比和比例有什么关系?(小组讨论后交流)

  3.比例的基本性质是什么?

  4.比例的基本性质有什么作用?怎样解比例?

  5.练一练:完成教材第83页的“练习与实践”。

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第3题:解比例,做好后选两题验算一下。

  四、完成教材第84页“练习与实践”。

  (1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第5题:

  第一小题让学生独立得出:深色与浅色地砖铺地面积的

  比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (3)完成第6题。

  五、评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

  沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

  对比和比例进行比较,强化理解,进一步优化知识结构。

  复习解比例。

  应用比例分配知识解决实际问题。

《反比例》教学设计11

  教学要求:

  使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

  进一步提高解决简单实际问题的能力。

  教学过程:

  提出本课复习题

  基本概念的复习

  什么叫两种相关联的量?

  下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

  什么样的两种量成正比例关系?什么样的'两种量成反比例关系?

  成正比例关系的量与成反比例关系的量有什么异同点?

  应用练习

  完成教材97页的“做一做”。

  第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

  巩固练习

  完成教材99页第6~7题。

  全课总结(略)

  教学目标:

  使学生进上步理解和掌握比和比例的意义与性质。

  区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

  教学过程:

  讲述本课复习课题并板书

  基本概念的复习

  比和比例的意义与性质。

  什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

  比和分数、除法有什么联系?

  说说比的基本性质的比例的基本性质?

  比的基本性质与比例的基本性质各有什么用处?

  看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

  完成教材95的“做一做”。

  结合第3题让学生说说什么叫做解比例?根据是什么?

  示比值和化简比。

  独立完成教材96页上的题目。

  说说求比值与化简比的区别?

  (求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

  看书中的表,总结方法。

  完成教材96页的“做一做”

  比例尺

  问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

  2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

  比例尺除写成数字化形式处,还可怎样表示?

  完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

  练习巩固

  完成教材十九页第1~4题。

  全课总结(略)

《反比例》教学设计12

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的'表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

《反比例》教学设计13

  【教学内容】

  反比例。(教材第47页例2)。

  【教学目标】

  1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

  2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

  【重点难点】

  引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

  【教学准备】

  投影仪。

  【复习导入】

  1.让学生说说什么是正比例,然后用投影出示下面的题。

  下面各题中哪两种量成正比例?为什么?

  (1)每公顷产量一定,总产量和公顷数。

  (2)一袋大米的重量一定,吃了的和剩下的。

  (3)修房屋时,粉刷的面积和所需涂料的数量。

  2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

  教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

  【新课讲授】

  1.教学例2。

  创设情境。

  教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?

  出示教材第47页例2的情境图和表格。

  请学生认真观察表中数据的变化情况,组织学生分小组讨论:

  (1)水的高度和底面积变化有关系吗?

  (2)水的高度是怎样随着底面积变化的?

  (3)水的高度和底面积的变化有什么规律?

  学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

  教师板书配合说明这一规律:

  30×10=20×15=15×20=……=300

  教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

  2.归纳反比例的意义。

  组织学生小组内讨论:反比例的意义是什么?

  学生小组内交流,指名汇报。

  教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  3.用字母表示。

  如果用字母x和y表示两种相关联的'量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?

  学生探讨后得出结果。

  x×y=k(一定)

  4.师:生活中还有哪些成反比例的量?

  在教师的引导下,学生举例说明。如:

  (1)大米的质量一定,每袋质量和袋数成反比例。

  (2)教室地板面积一定,每块地砖的面积和块数成反比例。

  (3)长方形的面积一定,长和宽成反比例。

  5.组织学生将例1与例2进行比较,小组内讨论:

  正比例与反比例的相同点和不同点有哪些?

  学生交流、汇报后,引导学生归纳:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

  不同点:正比例关系中比值一定,反比例关系中乘积一定。

  6.你还有什么疑问

  如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

  反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

  【课堂作业】

  1.教材第48页的“做一做”。

  2.教材第51页第9、10题。

  答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。

  (2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。

  (3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。

  2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。

  第10题:50 100 12

  【课堂小结】

  说一说成反比例关系的量的变化特征。

  【课后作业】

  1.完成练习册中本课时的练习。

  2.教材51~52页第8、14题。

  答案:

  2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。

  第14题:

  (1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。

  (2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。

  解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

  从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

  (3)斑马跑得快。

  第3课时 反比例

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)

  正比例与反比例的相同点和不同点:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

  不同点:正比例关系中比值一定,反比例关系中乘积一定。

《反比例》教学设计14

  第一课时

  教学设计思想

  本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  教学目标

  知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题。

  2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

  过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  2.体会数学与现实生活的'紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

  情感态度与价值观

  体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

  教学重难点

  重点:掌握从实际问题中建构反比例函数模型。

  难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

  教学方法

  启发引导、合作探究

  教学媒体

  课件

  教学过程设计

  (一)创设问题情境,引入新课

  [师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

  [生]是为了应用。

  [师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

  问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

《反比例》教学设计15

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的`这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

  教学目标:

  ⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:进一步理解比和比例的一些知识。

  教学难点:感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、自主学习,完成练习。

  ⑴揭示课题。

  教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

  ⑵自主练习。

  教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

  学生自主练习,教师巡视。

  二、交流讨论,梳理知识。

  ⑴整理比的知识。

  交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

  ⑵感受生活中的比例。

  交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

  ⑶整理比例的知识。

  交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

  ⑷整理解比例的知识。

  交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

  ⑸解决实际问题。

  交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

  ⑹谈谈本节课的收获。

【《反比例》教学设计】相关文章:

《反比例》教学设计05-11

反比例函数教学设计03-07

数学《反比例》教学设计09-10

反比例函数的教学设计08-18

《反比例函数》教学设计07-05

(热)反比例函数教学设计12-12

反比例函数教学设计11篇05-22

正比例和反比例教学设计12-06

认识成反比例的量教学设计范文(精选14篇)02-20

【精】正比例和反比例教学设计2篇02-04