- 植树问题教学设计 推荐度:
- 植树问题教学设计 推荐度:
- 植树问题教学设计 推荐度:
- 植树问题教学设计 推荐度:
- 植树问题教学设计 推荐度:
- 相关推荐
植树问题的教学设计15篇[精选]
作为一名无私奉献的老师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?下面是小编为大家收集的植树问题的教学设计,仅供参考,希望能够帮助到大家。
植树问题的教学设计1
【教学目标】
知识目标:
1.利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2.让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要栽)的解题规律,并利用规律解决一些实际问题。
能力目标:
1.让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。
2.通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。
情感目标:培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。
【教学重点】:引导学生发现棵数与间隔数的关系。
【教学难点】:理解间隔与棵数之间的规律并运用规律解决问题。
【教学准备】:课件、学生用尺子、表格等。
【教学过程】:
一、谜语导入,引入新课
师:同学们,你们喜欢猜谜语吗?
生:喜欢。
师:今天啊,老师带来一个谜语想和大家一起猜一猜,请看。两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。它是什么呢?你说说看?
生:他是手。
师:哦,他就是我们的手。我们的手作用可真大,又会写又会画还会算,而且我们的手上还有许多的数学奥秘,仔细看老师的手,你看到了数字几呢?
生:5.
师:哦,你们都看到了数字五,那你还能看到数字几呢?
生:我看到了数字4、3、2、1。
师:哦,你说的数字4、3、2、1表示的是什么啊?能告诉我们吗?
生:手指的个数。
师:哦,手指的个数。那我们说的五也是手指的个数,对吧。诶,除了手指的个数外你还能看到什么呢?
生:还能看到手指之间的间隔。
师:哦,手指之间还有一个个的间隔。同学们,在老师的手上五个手指之间到底有几个间隔呢?
生:4个。
师:数一数。1、2、3、4,恩,还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?
生依次回答。
师:恩,一个间隔。同学们,你们发现了手指数和间隔数之间的关系了吗?手指数比间隔数怎么样啊?
生:手指数比间隔数多一。
师:说得真完整。谁还说?
生2:手指数比间隔数多一。
师:哦,那间隔数比手指数呢?
生3:间隔数比手指数少一。
师:哦,谁还说?
生4:间隔数比手指数少一。
师:同学们,你能用一个算式来表示手指数和间隔数之间的关系吗?手指数等于什么呢?
生1:手指数等于间隔数加一。
师:哦,谁还说?
生2:手指数等于间隔数加一。
师:恩,还谁会说?好,你也来试试。
生3:手指数等于间隔数加一。
师:很好,那么间隔数等于什么呢?
生1:间隔数等于手指数减一。
师:恩。
生2:间隔数等于手指说减一。
师:恩,真聪明。好了,同学们,我们每个人啊,都有两件宝贝,一个呢是我们的双手,一个是我们的大脑。我们利用我们的大脑发现了这么多手上的奥秘,看来我们的数学真是无处不在啊。
二、探究规律实现目标
1、多媒体出示学校操场
师:这里是哪里?
生:操场!
师:看来同学们对我们的'学校真是非常熟悉,一下就认出了这就是我们的操场。为了美化我们的学校,校长打算在100米的操场小路上植树,可不是随便种的哦,校长可是有要求的。今天我们就要利用我们的双手和大脑一起来研究植树中的数学问题。-------植树问题。(板书课题)
出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?
师:读一读,在题中你读到哪些信息?谁来说一说?
生:……………………
师:一边表示什么?全长100米表示什么?每隔5米栽一棵表示什么意思?
师:什么是两端都要栽?
生:……………………..
(1)师小结:用图演示说明:一边是小路的一侧,指左边或者右边,全长100米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
(2)算一算,一共要栽多少棵树?
(3)反馈答案:
方法1:100÷25=20(棵)
方法2:100÷25=20xx+2=22(棵)
方法3:100÷25=20xx+1=21(棵)
(4)师提出疑问:现在出现了三种答案,到底哪种答案是正确的呢?用什么方法来验证?
三、自主探究,发现规律
1.师用课件出示下表说:同学们想的办法真多,我们可以选择画线段图来验证。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究、验证。如本题中假设路长只有5米、10米、15米、20米…每5米栽一棵(两端要栽),可栽几棵呢?下面我们一起来画线段图来分析、研究一下。(板书:复杂——简单)
总长
(米)
间距
(米)
线段图例
(图上厘米代表实际米的距离)
间隔数
(段)
棵数
(棵)
5
5
10
5
15
5
20
5
..
..
..
..
2.先明确表意,再让学生探索完成上表中的内容。
1.全班交流汇报表中内容。
2.小组讨论:总长、间距和间隔数之间有什么关系?间隔数和棵数之间呢?
3.把上表一分为二,让学生交流展示讨论结果。
(1)出示下表交流汇报总长、间距和间隔数之间的关系。并借助数据,帮助学生理解这一关系的意思。(板书:总长÷间距=间隔数)
总长
(米)
间距
(米)
间隔数
(段)
5
5
10
5
15
5
20
5
..
..
..
(2)出示下表交流汇报间隔数和棵数之间的关系。并借助表中数据,帮助学生理解这一关系的意思,但关键让学生理解为什么棵数比间隔数多1,渗透对应思想。(板书:间隔数+1=棵数)
线段图例
(图上厘米代表实际米的距离)
间隔数
(段)
棵数
(棵)
1
2
2
3
3
4
4
5
..
..
..
4.教师小结
(1)同学们非常能干,通过猜测、验证、讨论发现了植树问题中一个非常重要的规律,那就是如果再一条路上植树,两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1,而总长除以间距等于间隔数。对这个规律有没有不同意见?有没有不同说法?
(2)填一填,反馈规律。
()×间隔数=总长棵数–1=()
总长÷()=间距()-()=1
四、活用规律,解决问题
(一)回归疑问,初用规律
以表格的形式摘要出例题1的重要信息后,师说:现在我们用刚得到的规律验证一下课前同学们做例题1的三种解法,哪种正确呢?说说你是怎样想的?
总长
(米)
间距
(米)
间隔数
(段)
棵数
(棵)
100
5
(二)基础练习,再用规律
师:同学们真会动脑筋!通过简单的例子,发现了规律,应用这个规律解决了复杂的问题。以后遇到“两端要种,求棵数”的植树问题,知道该怎么做了吗?请试一试:
1、把下表补充完整
总长
(米)
间距
(米)
间隔数
(段)
棵数
(棵)
100
5
20
21
200
5
200
10
1000
8
(三)深化练习,拓展规律
师:同学们真能干!其实我们的生活中还存在着许多类似植树问题的现象。
1、说一说,生活中的哪些情况类似植树问题呢?
2、课件依次演示:
不容易看见却能“想象”的树
看不见却能“听得见”的树
师说明:在数学上,我们把这类问题也归为“植树问题”。
3、巧用规律,解决生活中类似问题
(1)请你选一选:
这排礼炮共有29个间隔,合()门礼炮。
①28门②29门③30门
(2)下面哪个算式是正确的?
一列共有25张凳子,有()个间隔?
①25+1=26个②25个③25-1=24个
(3)公交车从东站到西站全长18千米,相邻两站的距离是2千米。一共有多少个站点?
(4)一盒9响鞭炮,当听到第一个爆炸声开始计时,到第二声响起时,经过2秒钟。当听到最后一声响起时共经过几秒钟?
五、拓展
教师总结延伸:同学们这节课中运用化复杂为简单的数学思想方法发现了两端都栽的植树问题中的规律,并能利用规律解决生活中类似的实际问题。其实,植树问题还有一端栽一端不栽、两端都不栽、封闭图形,如正方形、圆形花坛等情况,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。继续努力吧!
六、全课总结,理顺知识
这节课你有什么收获?
植树问题的教学设计2
教学目标:
(1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。
(2)体验复杂问题简单化的快乐。
教学重点:应用植树问题的模型解决相关的实际问题。
教学难点:理解棵树与间隔数之间的关系。
教学准备:课件
教学过程:(如下文)。
一、课前谈话
1.手指游戏
师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?
师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)
[设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]
2.导入课题
师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)
二、动手种树,初步感知
1.创设情境,提出问题
(1)课件出示例1
同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
(2)理解题意
①指名读题,从中你了解哪些信息?
②理解“两端”是什么意思?
(3)讨论交流
师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。
全班讨论、交流,汇报后得出结论,这种说法不对。就应是:
100÷5=20(段)20+1=21(棵)(板书)
2.简单验证,发现规律
师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。
课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)
问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)
20+1=21(棵)20段为什么不是20棵,而是21棵呢?
我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1
透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)
师:你们真了不起,发现了植树问题中十分重要的规律,那就是:
间隔数(段数)=全长÷段长
植树的棵数=间隔数+1
全长=段长×段数
[设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]
三、利用规律,解决问题
师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一起来看一看下面几个问题。
①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?
②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?
③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?
师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
[设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的'理解,提升学生思维的灵活性和深刻性。]
四、再次探究,构建模型
1.创设情境,激趣导入
师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。
2.设计方案,动手操作
师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!
(生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)
3.反馈交流
师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)
师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。
生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。
生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)
生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……
4.师小结
同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。
五、精彩回放,画龙点睛
1.用手势表达植树问题的模型并考察同桌的掌握状况。
2.透过这节课的学习,你们有什么收获?
六、穿越时空,展望未来
有20棵树,若每行4棵,问怎样种植,才能使行数更多?
七、板书设计
植树问题:
两端都种:棵数=间隔数+1
100÷5=20(个)……(间隔数)
20+1=21(棵)……(棵数)
10-1=9(个)……(间隔数)
9+1=10(棵)……(棵数)
植树问题的教学设计3
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的'研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
植树问题的教学设计4
教学内容:
人教版小学数学五年级上册第106页例1。
教学目标:
1、知识与技能目标:
(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。
(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。
2、过程与方法目标:
(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。
(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。
(3)、培养学生的合作意识,养成良好的交流习惯。
3、情感态度与价值观目标:
(1)、感受数学在生活中的广泛应用。
(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。
教学重点:
通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。
教学难点:
把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。
教学过程:
一、谜语导入。
(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)
谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
(2)、师:同学们,伸出你的`左手,仔细观察,你能看到数字几?
(3)、认识间隔、间隔数。
(预设1:数字5,5个手指;数字4,4个手指缝。)
师:你观察得真认真!
师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)
(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。
师:你懂得真多,能告诉大家什么叫做间隔吗?
生口答,师出示手的图片,板书“间隔”和“间隔数”。)
(4)、认识生活中的“间隔”。
师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。
师:想一想,生活中还有哪些地方有间隔?
生充分交流
(5)、揭示并板书课题。
师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。
二、合作探索,了解三种植树方法
1、直接出示题目:
在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?
师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?
2、小组交流。
师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求
(1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;
(3)小组内说一说:你是怎样画的?
3、汇报。
师:谁来说一说,你栽了几棵树?谁还有不同的答案?
(2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的同学栽了3棵,咱就先请栽了5棵的同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)
有哪些同学是4棵的?说说你是怎样栽的?
刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?
4、三种植树方法的命名。 师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)
1、出示题目信息:一条新修的公路,全长100米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?
2、理解题意。
(1)、从题目中你得到了哪些数学信息?
(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?
题目中,“两端都栽”是什么意思?
师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。
(3)、同学们大胆猜测一下,一共要栽多少棵?
(指名生答)
(4)、提出验证。
a:师:到底哪个结论是正确的呢?我们怎么来验证一下?
b:生尝试寻求方法。
生:可以画一画图。
师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)
(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。
师:现在栽了多少米了?就这样一直栽到100米处吗?
(预设生:太麻烦了,浪费时间)
(6)寻求“化繁为简”的数学方法。
师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?
生尝试发表自己的想法。
(预设生:50米、20米、10米
师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)
师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。
师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?
(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)
师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)
(二)、自主探究。
(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。
(2)、生独立填表。
(3)、汇报交流:谁把你的结果向大家展示一下?
(师:谁和他的结果一样请举手?
师:看来大家都做得非常认真!)
师:为了便于大家观察,我把表格展示在大屏幕上。
(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)
间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。
那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?
(5)、学生独立思考,充分交流。
结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。
(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?
学生口述答案。
师:你真了不起!
(三)、应用规律,解决问题。
(1)、出示前面的例题。
师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?
(2)、生找出正确解法。
(3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)
(师:你讲得太棒了!老师真心佩服你!) (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!
三、学以致用。
1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)
生独立审题,尝试在练习本上独立完成。
师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?
2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
生独立审题,尝试在练习本上独立完成。
这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?
3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?
(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
指名读题,理解题意。
师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)
(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)
大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。
汇报交流,说出思路。
四、全课总结。通过今天的学习,你有什么收获?
生充分交流。
师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。
拓展延伸:
现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?
植树问题的教学设计5
教材分析:
“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
一、创设情境,导入新课
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)
透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
二、新课探究:
1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。
2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。
3.汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。
三、课堂练习
1、做一做:
(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?
(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的用心性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,
四、全课小结:
这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)
五、板书设计
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站:5路公交车行驶路线全长12千米,相邻两站的`距离是2千米,一共有几个车站?
(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
教学后记:
本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
一、动手操作、合作交流、探究规律:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。
二、练习的设计独特、新颖、有梯度:
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
三、充分体现学生的主体作用及教师的主导作用:
本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
植树问题的教学设计6
教材分析:本册“数学广角——植树问题”包含三个问题(两端都栽、只栽一端、两端都不栽),主要渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。教材第106页例1通过学生熟悉的植树情境,引导学生借助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,再运用模型解决实际问题。让学生经历分析、思考、解决问题的全过程。
教学内容:人教版义务教育教科书五年级上册第七单元数学广角——植树问题例1及相关练习。
教学目标:
1、通过生活中的事例。重点理解植树问题中“两端都栽”情况,理解与掌握间隔数与棵数之间的关系及其变化规律。
2、通过具体问题的解决过程,经历观察、猜测、验证、推理与交流等一系列的数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合、一一对应的数学思想方法,积累基本的数学活动经验。
3、能运用规律或策略解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。
教学重点:引导学生经历规律的获得过程,建立数学模型,并用所学的方法解决一些简单的问题。
教学难点:理解间隔数与棵数之间的关系。
教学准备:多媒体课件,小树和小路模型
教学过程:
一、谈话引入
1、师:你们知道3月12日是什么节日吗?(植树节)植树有什么好处呢?
2、揭题课题:今天我们就来研究有关植树的.问题。(板书课题:植树问题)
二、探究新知
1、提出问题,猜想规律。
出示情境图:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?
引导学生理解题意。
学生尝试解答:你认为一共需要多少棵树?你是怎样想的?
提出质疑:对吗?我们需要检验一下。
引导学生提出研究设想。
看来这个问题值得我们研究,可100m有点长,研究起来不方便,怎样才能使我们的研究方便呢?(对,我们可以先研究20m的小路一边栽树情况)
2、动手操作,探究规律。
(1)研究在20m的小路上栽树的问题。
学生利用手中的学具摆一摆,或者画一画线段图,看看每个5m栽一棵,一共要栽几棵。
(2)研究30m、35m、40m……小路上的植树情况,完成手中的表格。
3、讨论交流,总结规律。
仔细观察表格,你发现间隔数和棵数之间有什么关系?
先同桌交流,再全班交流。(棵数=间隔数+1)
4、解决问题,运用规律。
(1)解决课本第106页例1,“在100m的小路一边植树,每隔5m栽一棵。一共需要栽多少棵树?
(2)思考:如果是“两边都植树”,那一共需要多少棵树呢?
三、深化提高
智力大闯关
第一关:
1、学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵(两端要栽)。一共要栽多少棵树苗?
2、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一盏。一共要安装多少盏灯?
第二关:
1、园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
2、1路公共汽车从新城到老城设有10个站台,每相邻两个站台之间的距离为1千米。1路公共汽车的行驶路线全长多少千米?
第三关:
1、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
2、一条路原有木电线杆46根,每两根之间相隔12米。现在要全部换成水泥电线杆,如果每两根电线杆之间间隔20米,需要多少根水泥电杆?
四、回顾总结
通过今天的学习,你有什么收获?还有哪些问题?你是用什么方法来获取这些知识的?
五、拓展延伸
假如只栽一端,或者两端都不栽,棵数与间隔数又有什么样的关系?想研究吗?那么请同学们用今天学到的方法课后研究研究,好吗?
六、板书设计植树问题
(线路一侧,两端都栽)
间隔数=总长÷间距
棵数=间隔数+1
植树问题的教学设计7
教材分析
两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
学情分析
让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。
教学目标
1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。
2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。
3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。
教学重点和难点
[教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。
[教学难点]:掌握用线段图解决生活中的数学问题的方法。
教学过程
一、创设情境
1、听唱歌曲《春天在哪里》,让学生感受春天的美好。
2、比较两组图片的`不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。
二、探究新知
(展示题目)
(一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、
1、学生画线段图表示,教师巡视指导。
2、指名回答。
3、教师把学生的想法用表格出示如下:
4、引导总结:
5、生:手指线段图
师:在线段图上,点数和间隔数又有怎样的关系呢?
生:点数=间隔数+1
6、师:总长与间距和间隔数又有怎样的等量关系呢?
生:总长=间距×间隔数
7、尝试应用:
三、巩固新知
四、小结本节内容
五、教学作业
植树问题的教学设计8
教学目标:
1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。
2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。
3、感悟建构数学模型是解决实际问题的重要方法之一。
教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。
教学过程:
1、猜
T:这节课我们就一起研究植树问题。请大家看屏幕:这里有一条线段,我们把它看成一条路,这条路长20米。如果要在这条路上种树,请同学们想一想,你还需要了解什么信息?
S:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)
T:同学们考虑问题还很全面,确实我们需要知道一个最起码的条件,就是树和树之间的间隔是多少米。如果告诉你们每隔5米种一棵,请同学们想一想在这条路的一边种树,可以种几棵?
S:可以种5棵,4棵,3棵。
2、画
T:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的.练习纸,把你的想法画在练习纸上。开始吧!
S独立画图,教师巡视指导。
T:画好了的请举手。我们找同学说说你是怎样画的。
顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)
3、找规律
T:仔细观察这三种植树情况,虽然他们种的棵数不同,但是他们有一个相同的地方,你发现了吗?
S:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)
T:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?
T:怎么求这个段数,能用式子表示一下吗?
S:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)
T:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。
S:汇报T强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)
4、列算式
T:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?
S:独立列算式汇报说理由。
T:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。
5、解决问题
T:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?
(1、同学们要在全长100米的小路一边植树,每隔5米栽一棵(两端要载)。一共需要多少棵树苗? 2、大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要载多少棵树?
3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)
S列式解答全班交流
6、拓展延伸
T:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?
S:剪绳子,锯木头,摆花
T:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)
7、总结
T:这节课学得怎么样?
植树问题的教学设计9
教学内容:
《植树问题》
教学来源:
人教版小学数学教材第九册第七单元《植树问题》
教学对象:
五年级学生
备课人:
张金玲
基于标准:
数学广角的教学目标可概括为以下几点:
1、 感悟重要的数学思想方法;
2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;
3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。
教材分析:
《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
学习目标:
1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。
2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。
评价任务:
任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。
任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。
【学习重点】:发现棵数与间隔数的关系。
【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。
【教学准备】:课件、小组学习单
【教学过程】:
一、导入新课
1、猜谜语,直观认识间隔
新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的.组成部分。”它是什么呢?谁知道?(手)
同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)
哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。
手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)
我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)
你发现什么了吗?(生说)
的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。
二、探究规律 实现目标
1、例题探究
说起植树问题我们就先从植树谈起吧。请看例题。
出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?
A、从题中你能知道哪些信息?谁来说一说?生说,师画。
它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……
师小结:
一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
B、算一算,一共要栽多少棵树?反馈答案:
方法1:1000÷5=200(棵)
方法2:1000÷5=200 200+2=22(棵)
方法3:1000÷5=200 200+1=21(棵)
疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)
三、自主探究,发现规律
1、化繁为简探规律
是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)
是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。
植树问题的教学设计10
教材分析:
植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。
学情分析:
从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
设计理念:
新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重难点:
一、教学重点
1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.
2、运用规律解决类似的实际问题的方法。
二、教学难点
理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。
教学方法:
1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题
2、分组探究,发现规律,建立数学模型
3、运用规律,解决问题
4、回归生活,实际应用
教学准备
PPT课件 多媒体设备
教学过程
一、新授
1.照片引发的思考
师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?
在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)
师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)
师:(生读完)说说吧学校植树都有哪些要求(指名回答)
师:每隔5米种一课
师:每隔五米指的是什么(点名回答)
生:间隔
师:这个词不错(板书间隔)。间隔指的是什么?
生:两棵树之间的距离
师:学校要求两棵树之间的距离是多少?
生:5米
师:还有哪些要求吗?
生:两端都要栽。
师:这个要求也很重要(板书两端都要栽)
说说是什么意思?
生:两头都要栽
师:你能用手比划比划吗?
生:能
师:还有什么要求吗?
生:在100米的小路的一边
师:强调一边就是一行
让学生试着独自完成提前的`题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)
师:做完了吗
生:做完了
师:做完了,看黑板,同样的要求出现了三种不同的答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?
三、合作探究、寻找规律
1、小组探究,给予充分的时间。
那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)
师:大家往前看,大家探究出来结果了吗?
学校到底需要买多少棵树?谁来说?(点名回答)
生:我们小组讨论的结果是21棵。
师:同学们对于这个小组讨论的结果21棵你们同意吗?
生:同意
师:大家都是正确的
你们小组使用什么样的方法得出结论的呢?
生:画线段
师:愿意展示给大家看吗?
大家注意听,看看这位同学的方法和你们的方法有什么不一样的地方?
生:总结先画一条线段表示100米,100除以5是20个间隔
师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?
生:最后一棵没加上
师:你把什么当成小树啦?
生:线段上的小端点
师:数一数是21个吗?
生:是
师:听明白了吗?有什么想问问他的吗?
还有没有其他的方法?
生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔
师:为什么加一呀
生:最一开始的一根或者最后一根没算
师:也就是学校要求两端都要栽
师:当做两端都要栽的问题时 间隔数+1=棵数
师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!
看看这一规律的发现过程出示ppt
棵数=间隔数+1
间隔数=全长÷间隔长
师:请同学们很自豪的把自己总结的规律读一遍。
一共需要多少棵树苗。(学生操作、思考、教师巡视)
师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?
师:6棵树几个间隔7棵呢99棵呢200棵呢
8间隔几棵树呢50个间隔呢1000个间隔呢
师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯
在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案
师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2
这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?
师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀
北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?
能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)
师:谁说说你是怎么样算的?
生:18-1求出间隔数
700×17=11900(米)
11900米=11.9千米
师:都对了吗?
生:做对了
师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?
生:2时
师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?
师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?
生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)
师:同学们说得真好
总结:这节课大家都有什么收获?
两端都要植:棵数=间隔数+1
间隔数=棵数-1
板书设计:
植 树 问 题
两端都栽 棵树 间隔数
植树问题的教学设计11
设计理念:
笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。
在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。
教学目标:
1、知识与能力目标:
通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。
2、过程与方法目标:
使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、情感态度与价值观目标:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重点:
理解“两端都不种”的植树问题的规律
教学难点:
应用“两端不种”的植树方法去解决生活中类似的问题
教学过程:
一、创设情境,发现问题
同学们学过植树的知识吗?请大家来帮忙解决下面这个问题
房屋间的.距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?
误区:60÷10=6(个)
6+1=7(棵)
两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题
(设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)
二、化繁为简,经历猜测、验证的过程探索规律
师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别
讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样
师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?
猜测:棵数=间隔数+1
是不是这样呢,我们来验证一下(植树)
两端不种
棵数=间隔数+1
(设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)
二、深入学习应用“两端不栽”的规律
1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?
2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)
②师:同学们讨论一下解决这道题要注意什么?
课件闪烁:将“两旁栽树”,“两端不用栽”
学生展示:60÷3=20(个)
20-1=19(棵)
19×2=38(棵)
答:一共要栽38棵树。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
(设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)
三、回归生活,实际应用
1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?
20÷4=5(个)
5—1=4(面)(面数=间隔数-1)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?
4-1=3(层)(层数=楼数-1)
3×26=78(级)
(问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)
3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)
5-1=4(次)(次数=段数-1)
4×8=32(分)
(设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)
四、全课总结
通过今天的学习,你有哪些收获?
(设计意图:让学生回顾本节知识达到及时巩固的作用)
五、板书设计
植树问题(两端不种)
棵数=间隔数生活中
间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、
学生展示:60÷3=20(个)上楼:层数=楼数-1
20-1=19(棵)锯树木:次数=段数-1
19×2=38(棵)
答:一共要栽38棵树。
(设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)
植树问题的教学设计12
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣
1、猜谜导入揭题
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)
师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?
数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的.距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律
1、激趣引入,启发探究积极性
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求
招聘启示
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
江口小学
20xx.6
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
植树问题的教学设计13
教学目标:
1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重、难点:
发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学过程:
一、创设情境——培养意识
1、师:同学们好!一起来看两组画面。
(给学生播放荒漠化严重的和绿化优美的两组图片。)
师:看了这两组画面,你更喜欢哪一种呢?
师:怎样才能拥有这样美丽的环境呢?
生:植树。
师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!
师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题
2、出示教学目标
3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。
师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?
二、动手种树——探讨规律
1、动手“种”树
师:大家先看老师为大家准备的材料……(师介绍)
出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?
学生动手植树,师巡视。
2、交流方案
小组上台展示自己组的种树方案。
两端都种
两端不种
只种一端
3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?
生仔细观察,得出猜想:两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
三、验证规律
1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。
2、完成验证表格。
师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)
3、小组合作探究。
4、展示。
分三种情况汇报。
5、梳理规律
师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?
相同点:都与间隔数有关
不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1
师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。
四、解决问题
师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?
1、处理信息
问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?
生:种树!
出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵
师:根据这些信息你会提什么数学问题呢?
生:一共可以种多少棵树?
得不完整例题:
实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?
师:看着这道题,谁有话想说吗?
生1:两端都种
得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:受他的启发,还能提出什么样的`问题?
生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?
生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?
师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?
生:两端都种
2、抽取问题
出示例题:(配图片)
实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:愿意帮学校算算吗?
3、学生试解。
4、汇报交流。
生汇报,师:能说说你的解题思路吗?
师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。
师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?
5、探讨只种一端
师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?
生:只种一端。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)
学生试解。
6、探讨两端不种
师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?
生:两端不种。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)
学生试解。
五、小结方法——提升认识
1、探讨方法
师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!
师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?
(动手操作——提出猜想——画图验证——得出规律——解决问题)
2、阅读课本
(1)阅读例1
师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。
师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?
生:画图,找规律。
师:真是好方法!大家掌握了吗?
(2)阅读例2
师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?
生完成,交流。
六、拓展练习
1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)
2、生尝试解答。
3、全班交流。
七、全课小结
师:通过今天的学习,你有什么收获呢?
生畅谈自己的收获。
师小结:收获方法比收获知识更重要,祝贺大家!
板书设计:
植树问题
两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
植树问题的教学设计14
教学目标:
一、知识与技能性:
1、利用学生熟悉的生活情境,透过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2、能够借助学具,利用规律来解决简单植树的问题。
3、透过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
二、过程与方法:
1、进一步培养学生从实际问题中发现规律,应用规律解决问题的潜力。
2、渗透建模的思想,培养学生由具体到抽象的转化思想。
3、培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
1、透过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
2、渗透爱绿、护绿的德育教育。
教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:教具、学具、课件
教学过程:
一、创设情境,导入新知:
(出示光头强砍树的画面)
师:孩子们,你们喜欢光头强吗?
生:不喜欢
师:为什么呢?
生:因为他乱砍树,破坏森林(让学生畅所欲言,对学生进行爱绿、护绿的德育教育)
(出示熊大、熊二抓光头强的画面)
师:它们也不喜欢呢!瞧、
(出示“保护森林,熊熊有责”)
师:其实,保护森林,不仅仅仅是熊的职责,更是——
生:人的职责
师:那我们就应说——
生:“保护森林,人熊有责”
师:这天,就让我们跟熊大、熊二一起来植树吧!
二、建模探究,总结方法
1、探究“两端都植”的状况
出示:熊大、熊二要在小路的一侧植树(两端都植)
引导孩子们认识“一侧”“两端都植”。
在教具上,引导孩子们理解并板书“总长”“间隔长”“间隔数”和“棵数”。
游戏:小组植树比赛
师:听我口令,看哪个小组行动最快!
师:两端都植,间隔长为5厘米时,间隔数和棵数分别是多少?
师:间隔长为10厘米呢?15厘米呢?
师:休息会儿,看看总长、间隔长、间隔数和棵数它们之间有什么关系呢?
引导孩子,发现规律:总长÷间隔长=间隔数
间隔数+1=棵树(强调“两端都植”)
出示练习巩固:熊大、熊二要在长100米小路的一侧,每隔5米栽一棵树(两端要植),需要多少棵树呢?
师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中
100÷5=20(个)
20+1=21(棵)
2、探究“一端植”的状况
师:突然,发现路的一端是光头强家呢!(引导学生说“只能植一端”)
师:也是这个规律吗?赶紧在你的60厘米小路的最左端安上光头强家,填一填学生报告表格一,并填出你们的发现。
(小组内分工合作:栽树、填表)
学生汇报:总长÷间隔长=间隔数
间隔数=棵树(强调“一端植”)
出示练习:熊大、熊二在长100米的小路的一侧栽树,每隔5米植一棵树,(一端是光头强家),需要多少棵树呢?(那两侧呢?)
师:你能帮忙解决这个问题吗?赶紧做到你的练习纸二中
100÷5=20;(20×2=40)
3、探究“两端不植”的状况
师:这时,又发现路的'另一端是吉吉国王的猴山呢!
(引导学生说“两端都不植”)
师:那到底需要多少棵树呢?请用你喜欢的方式表示出来吧!
学生汇报:总长÷间隔长=间隔数
间隔数-1=棵数(强调“两端不栽”)
出示练习:熊大、熊二在小路的一侧植树,每隔5米植一棵树,总共植了20棵(一端是光头强家,另一端是吉吉国王家),这条路多长呢?
师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中
(20+1)×5=105(米)
师:熊大、熊二就这样一条路一条路的植树,有一天它们又想在一个圆形的池塘身旁植树。
出示:熊大熊二要在圆形池塘周围植树。池塘的周长是120米,如果每隔10米植一棵,需要多少棵树呢?(引起孩子们思考)
师:这种状况,又会是什么状况呢?我们下节课之后研究。
师:这就是我们这天研究的不同状况的植树问题。(板书课题:植树问题)
三、开放练习,应用方法。
师:其实,生活中有很多跟植树问题类似的问题呢,比如xxx(引导孩子来说)
马路问题、楼梯问题、钟表问题、公交站问题、队列问题、锯木头问题,
四、小结:
出示:“完美生活,从我做起”(播放欢快音乐)
师:同学们,说说你们的收获吧!
植树问题的教学设计15
教学目标:
1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。
2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。
3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
教学重难点:
引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。
教学准备:课件,纸条,小刀。
教学过程:
课前热身:
师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)
师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。
一、创设情境,生成问题。
1、猜谜激趣。
师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)
生:一刀两断。
教师板书:1刀2段,并画出线段图表示。
师:切两刀呢?(生猜测,师演示,指名画线段图)
学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?
师:你发现了什么规律?
学生说,教师板书:刀数=段数-1。
2、提出问题。
师:同学们真聪明,可以帮我一个忙吗?出示设计要求:
在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。
师:从这份要求上,你能获得哪些信息?
(20米长的.小路,一边,每隔5米种一棵。)
师:每隔5米是什么意思?
(每两棵树之间的距离是5米,每两棵树之间的距离相等。)
二、探索交流,解决问题。
1、设计方案,动手种树。
师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)
2、反馈交流。
师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)
师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)
师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?
生:两棵树间的间隔都一样,他们的间隔个数都相同。
师:那它们的不同点又在哪里?
根据学生的回答板书:
(1)两端都栽。
(2)只栽一端。
(3)两端都不栽。
师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。
3、合作探究,总结规律。
师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?
小组合作探究,教师巡视指导。
4、交流规律。
小组汇报,其他小组补充。教师根据汇报情况板书:
两端都栽:棵数=段数﹢1
只栽一端:棵数=段数
两端都不栽:棵数=段数-1
5、验证规律。
师:我们再用线段图验证一下我们发现的规律。
(1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?
(2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?
(3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?
6、强化规律。
请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。
师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!
师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)
你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)
三、巩固练习,运用规律。
师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)
1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?
2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?
4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)先判断属于哪种情况,独立解决。
(2)小组交流。
(3)汇报。
师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!
四、回顾整理,反思提升。
师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?
指名说一说。
你认为谁的表现最值得你去学习?
板书设计:
植树问题
两端都栽:棵数=段数﹢1
只栽一端:棵数=段数
两端都不栽:棵数=段数-1
【植树问题的教学设计】相关文章:
植树问题教学设计06-10
《植树问题》教学设计05-21
植树问题教学设计08-31
《植树问题》教学设计04-11
植树问题的教学设计09-27
人教版《植树问题》教学设计05-23
植树问题优秀教学设计06-16
植树问题教学设计优秀12-16
植树问题教学设计15篇06-16
植树问题教学设计(15篇)06-16