一元一次不等式教学设计
作为一无名无私奉献的教育工作者,很有必要精心设计一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的一元一次不等式教学设计,希望能够帮助到大家。
一元一次不等式教学设计1
教学目标:了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:是掌握解一元一次不等式的步骤.
教学难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
教学过程: 一、问题导入
复习:1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+ 5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5 ≥8 (2)x+1≤-4 ( 3)x<2 (4)6-3x>4 3(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+ 5=7-2x的解法试解一元一次不等式:6x+ 5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x < 2x +9 (2)2-4(x-1)> 3(x+2) -x
(3)(x-1)/ 3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x < 2x + 9的每一步变形的依据是什么,特别注意的'是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、 巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3<5x+3 (2) 5x+3<0 2="">x–1 (4) x(2x+1) 2、课本124页1题(1)(2)(3)(4)3、课本124页2题, 五:课堂小结:本节课你学到的知识有哪些?你认为有哪些重点要强调,哪些易错点应注意?六:作业:七:课后延伸:生活中的不等式应用很多,有时可以帮我们解决很多困难,下节课我们继续学习。 (第1课时) 一、教材内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础. 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的的3个性质(特别是性质3,要改变不不等号的方向),逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法. 二、学习目标 1·了解一元一次不等式的概念,掌握一元一次不等式的解法;2·在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会. 3·依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤. 三、教学重难点 1·教学重点:掌握一元一次方程概念及解法,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,逐步将不等式变形为最简形式.2·教学难点:解一元一次不等式步骤的确定. 四、教学方法: 启发式、小组合作学、学生展讲、教师点评、归纳总结等模式 五、教学过程设计 (一)新课导入形成概念 问题:观察下面的不等式,它们有哪些共同特征? 3x—7>26 3x<2x+1x>50 —4x>3 4学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比. 师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力. (二)通过类比研究解法 练习:利用不等式的性质解不等式x—7>26学生尝试独立完成练习 教师结合解题过程,指出:由x—7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向. 设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么? 学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1. 设问2:解一元一次不等式能否采用类似的步骤?学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路. (三)例题讲解 规范步骤 例:解下列不等式,并在数轴上表示解集(1)2(1+x)<3(2) ≥ 设问(1):解一元一次不等式的目标是什么? 学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?由学生独立完成,老师评讲设问(3)对比不等式么不同? 设问(4):怎样将不等式 ≥ 变形,使变形后的不等式不含分母? ≥ 与2(1+x)<3的两边,它们在形式上有什小组合作交流,老师点拨 设问(5):你能说出解一元一次不等式的基本步骤吗? 学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤. (四)辨别异同 深化认识 设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处? 学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处. 相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式. 不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方程的`最简形式是x=a.设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想. 设问2:解一元一次不等式每一步变形的依据是什么? 学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力. (五)学以致用,能力提升 课本P124页的练习1、2两题 设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用. (六)课堂小结 (七)布置作业,课外反馈 教科书P126习题9.2第1,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.本节课教学反思 通过问题引导让学生会一元一次不等式的解法,由于一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前老师先口头复习了等式的性质,然后通过对两个不等式不等式的式子在左右两边同时加上、减去、乘以、除以某一个相同有数,让学生自己归纳出不等式的性质,同时和前面刚复习的等式的性质比较,对比掌握。类比一元一次方程的解法学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后系数化为1不同,其它的步骤是相同的,强调最后一步(用不等式的性质2或3)系数化为1“负变,正不变”。学生掌握得很好。并在这一节重视用数轴表示不等式的解集。 存在不足:发现学生对不等式及不等式组的解法掌握得较好,但对不等式的特殊解不是很理解还有在列不等式的时候很多学生不懂如何用不等式表示“负数”、“正数”、“非正数”、“非负数”,“不大于”、“不小于”。对一元一次不等式的应用这部分内容,我们感觉学生掌握得最薄弱,这也作为老师的我觉得比较困惑的问题。正在努力寻找行之有效的措施。提出建议:对将表示不等式的语句转化成不等式要强化训练,如“至多“、“至少”、“不超过”,“剩余”、“不够”等等,为后面的应用题作准备,我们知道在列一元一次方程或方程组解应用题,学生学握起来非常困难,主要是等量关系难找。而在不等式的应用题中,不等关系将更难找,很多表示不等关系的语句隐藏得较深,所以要提前作好这方面的准备。 【基于课标】 会用数轴确定由两个一元一次不等式组成的不等式组的解集 【基于对教材的理解】 一元一次不等式组是河南中考的必考内容,近五年的考卷多以填空选择出现。教材在这部分以解不等式组和确定解集为重点,中招考试落脚点也在于此。并且这部分内容常常结合一次函数、反比例函数来确定函数值范围。 【基于对学情的分析】 1、学生已有知识基础。 九年级学生已经初步掌握了初中三年的数学知识,经历了一元一次方程、一次函数、一元一次不等式的.学习,积累一定的知识基础。大部分学生能够解一元一次不等式,但是基础薄弱的学生在用数轴确定解集时方向会出错。一元一次不等式解集的应用,确定字母的值或范围,很多学生在此容易迷惑,到底是未知数的范围还是字母的范围。 2、已有的活动经验 九年级学生具备一定的自学、交流、表达能力,具备有条理的思考分析和书写解答过程能力,思维正逐步由具体走向抽象。但是目前更多的还倾向于通过具体的问题来理解定义、定理和性质。3。学习本节可能出现的难点 (1)用数轴确定不等式组解集。 (2)用不等式组解集确定字母的值或范围。 【学习目标】 1、通过具体举例分析,会用不等式基本性质解一元一次不等式组。 2、会用数轴正确表示一元一次不等式组的解集。 3、能根据不等式组的解集确定字母的值或范围。 【学习重点】 解一元一次不等式组 【学习难点】 (1)数轴确定一元一次不等式组解集 (2)用不等式组解集确定字母的值或范围 【评价任务】 1、能用待定系数法求二次函数表达式。 2、能用顶点坐标公式或配方法求出二次函数最值。 3、能用五点法画出二次函数图象。 【评价标准】 1、学生能通过看课本,说出这节课复习主要内容和重点 2、学生能正确举出一元一次不等式组的例子,并自主解答 3、学生通过借助数轴,能正确表示不等式组的解集 4、学生积极参与讨论,能用所给解集求出不等式组中字母的值或范围。 【评价方式】 以交流式评价和表现性评价和检测为主要方式进行。 1、交流式评价。 通过师生、生生对话交流,及时对学生进行评价。 评价内容如下:根据学生对以下活动的开展情况检测任务的完成。 针对评价任务1: 请一两位同学说说这节复习课的主要知识点和复习重点。 针对评价任务2: (1)请同学举一个一元一次不等式组的例子,并请该同学上台板演解答过程。 (2)结合学生给出的例子,再画出另外三种解集情况,学生单独回答不等式解集。 针对评价任务3: 小组讨论交流,选出中心发言人回答确定字母值或范围的方法。 2、表现性评价。 通过独立思考,互学,师生互动、生生互动观察学生在活动中的表现以及回答问题情况对学生进行评价。 3、检测评价。 通过当堂检测3个小题,对学生进行检测性评价。 【学习过程】 一、复习引入 1、回顾上节课复习内容 2、呈现课标要求 3、呈现本节复习内容在中考中的出题方向和题型 4、明确本节复习目标 二、基础巩固 任务1:重回课本巩固概念 (1)阅读八下课本56页——59页,概括出主要内容和重点。(多媒体展示主要内容,学生齐读一遍,再强调重点是解不等式组。) 任务2:解一元一次不等式组并确定其解集 (2)学生举一个一元一次不等式组的例子,全班同学一起求解,并要求在解题后总结易错点。 (请一位同学板演过程,批改时用彩色粉笔标出易错之处。) (3)不等式组的解集,我们是通过数轴来确定的。现在老师把这条数轴上的解集范围变化一下,请你再确定解集范围。 (还有三种情况,在黑板上画出来,提问学生回答。) 一、内容与内容解析 (一)内容 一元一次不等式组的概念及解法 (二)内容解析 上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键。教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念。学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念。求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验,基于以上的分析,本节课的教学重点:一元一次不等式组的解法。 二、目标及目标解析 (一)目标 (1)理解一元一次不等式组、一元一次不等式组的解集等概念。 (2)会解一元一次不等式组,并会用数轴确定解集。 (二)目标解析 达到目标(1)的标志是:学生能说出一元一次不等式组的特征。 达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤。 三、教学问题 诊断分析通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻。本节课的教学难点:在数轴上找公共部分,确定不等式组的解集。 四、教学过程设计 (一)提出问题形成概念 问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么?设问(1):依据题意,你能得出几个不等关系?设问(2):设抽完污水所用的时间还是范围? 小组讨论,交流意见,再独立设未知数,列出所用的.不等关系。教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示?学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围?学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围。教师追问(3):怎样解不等式,并用数轴表示解集?学生独立完成。教师追问(4):通过数轴,怎样得出不等式组的解集?学生独立完成,老师点评教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组?学生自学概念。 设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力。并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义。 (二)解法探讨步骤归纳例1解下列不等式组 学生尝试独立解不等式组,老师强调规范格式 设问1:当两个不等式的解集没有公共部分,表示什么意思?设问2:解一元一次不等式组的一般步骤是什么? 学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集。 设计意图:初步感受解一元一次不等式组的方法和步骤。 (三)应用提高深化认知 例2 x取那些整数值时,不等式5x+2>3(x-1)与≤都成立? 设问1:不等式都成立表示什么意思?小组讨论 设问2:要求x取哪些整数值,要先解决什么问题?学生先合作交流,再独立解不等式组设问3。怎样取值? 学生在不等式组的解集范围内,取整数值。老师强调即求不等式组的特殊解。设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练。 (四)归纳总结反思提高 教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题。 (1)什么是一元一次不等式组?什么是一元一次不等式组的解集? (2)解一元一次不等式组的一般步骤? (3)一元一次不等式组解集的一般规律是什么? 设计意图:通过问题归纳总结本节课所学的主要内容。 (五)布置作业课外反馈教科书习题9第1,2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整。 【知识与技能】 1、了解一元一次不等式组的概念。 2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。 3、会解一元一次不等式组。 【过程与方法】 通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。 【情感态度】 运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。 【教学重点】 一元一次不等式组的`解法。 【教学难点】 确定一元一次不等式组的解集。 一、情境导入,初步认识 问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求? 解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。 由①解得_____________,由②解得_____________。 在数轴上表示就是________________。 容易看出:x的取值范围是____________________。 这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。 问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。 【教学说明】 全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。 二、思考探究,获取新知 思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组? 【归纳结论】 1、定义: (1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。 (2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。 (3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。 2、一元一次不等式组的解法: (1)求出每个一元一次不等式的解集。 (2)求出这些解集的公共部分,便得到一元一次不等式组的解集。 【教学目标】: 1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型, 会用一元一次不等式解决简单的实际问题。 2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题 的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型 3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习 惯;学会在解决问题时,与其他同学交流,培养互相合作精神。 【重点难点】: 重点:一元一次不等式在实际问题中的应用。 难点:在实际问题中建立一元一次不等式的数量关系。 关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的 不等量关系,列代数式得到不等式,转化为纯数学问题求解。 【教学过程】: 创设情境,研究新知 这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。 问题1:中国旅行社的原价是每人100元,可以给我们打7。7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱? (从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式) 观察探讨,实际操作 选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动 问题2: 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案: 甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。我们选择商店购物才获得更大优惠? 分析:这个问题较复杂,从何处入手呢? 甲商店优惠方案的'起点为购物款达___元后; 乙商店优惠方案的起点为购物款过___元后。 启发提问:我们是否应分情况考虑?可以怎样分情况呢? (1)如果累计购物不超过50元,则在两店购物花费有区别吗? (2)如果累计购物超过50元,则在哪家商店购物花费小?为什么? 关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。 小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题 从关键语句中找条件 符号表达 1、 根据设置恰当的未知数 2、用代数式表示各过程量 3、寻找问题中的不等关系列出不等式 解不等式 注意不等式基本性质的运用 (本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。) 预留悬念 要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。 (抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫) 教学设计: 一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。 本节课的教学设计从以下几个方面进行设置: 1。、教学内容: 本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。 2、 组织形式: 本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。 3、 学习方式: 动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。 4、 评价方式: 教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。 一、教学目标: (一)知识与能力目标:(课件第2张) 1.体会解不等式的步骤,体会比较、转化的作用。 2.学生理解、巩固一元一次不等式的解法. 3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。 4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。 (二)过程与方法目标: 1.介绍一元一次不等式的概念。 2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。 3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。 4.学生将文字表达转化为数学语言,从而解决实际问题。 5.练习巩固,将本节和上节内容联系起来。 (三)情感、态度与价值目标:(课件第3张) 1.在教学过程()中,学生体会数学中的比较和转化思想。 2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式 的解法,树立辩证统一思想。 3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。 4.通过本节的学习,学生体会不等式解集的奇异的数学美。 二、教学重、难点: 1.掌握一元一次不等式的解法。 2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。 3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。 三、教学突破: 教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。 四、教具:计算机辅助教学. 五、教学流程: (一)、复习: 教学环节 教师活动 学生活动 设计意图 导入新课 1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤) 2.学生回忆不等式的性质,并说出解不等式的关键在哪里。 3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。 4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。 5.学生练习,并说出解一元一次方程的`步骤。 6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页) 7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。 8.明确本课目标,进入对新课的学习。 9.复习解一元一次方程的解法和步骤。 10.让学生回顾性质,以加强对性质的理解、掌握。 11.运用类比思维 12.自然过度,出示课件第3、4张 (二)、新授: 教学环节 教师活动 学生活动 设计意图 探究一元一次等式的解法 1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。 2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。 3.激励学生完成对(2)解答,并找学生上讲台演示。 4.强调在数轴上表示解集时的关键(出示课件第8页) 5.出示练习(出示课件第9页) 6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页) 7.指导学生归纳步骤。 8.补充适当的练习,以巩固学生所学。(出示课件第12页) 9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。 10.学生类比解一元一次方程的步骤 与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页) 11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。 12.理解、体会在数轴上表示解集的方法和关键。 13.学生组内讨论完成。 14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。. 15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页) 16.认真完成练习。 17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张) 18.巩固对一般解法的理解、掌握。 19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。 20.让学生明白不等式的解集是一个范围,而方程的解是一个值。 21.培养学生的扩展能力。 22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。 23.通过动手、动脑使所学知识得到巩固。 24.巩固所学。 (三)、小结与巩固: 教学环节 教师活动 学生活动 设计意图 小结与巩固 1.引导学生对本课知识进行归纳。 2.学生完成后(出示课件第13、14页)。 3.练习与巩固。 1.学生组内讨论小结,组长帮助组员对知识巩固、提升。 2.学生加强理解。 3.完成练习:书63页第4题,第5(2、4)题。 1.培养学生总结、归纳的能力。 2.点拨学生对知识的理解与掌握。 3.巩固本课所学。 一、内容和内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础. 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法. 二、目标和目标的解析 (一)目标 (1)了解一元一次不等式的概念,掌握一元一次不等式的解法; (2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会. (二)目标解析 达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集. 达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤. 三、教学问题诊断分析 通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进行比较,逐步将不等式变形为最简形式. 本节课的教学难点为:解一元一次不等式步骤的确定. 四、教学过程设计 (一)引导观察 形成概念 问题:观察下面的不等式,它们有哪些共同特征?x—7>26 3x<2x+1 x>50 —4x>3学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力. (二)通过类比研究解法 练习:利用不等式的性质解不等式x—7>26学生尝试独立完成练习 教师结合解题过程,指出:由x—7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向. 设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么? 学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1. 设问2:解一元一次不等式能否采用类似的步骤?学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的`步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路. (三)例题讲解规范步骤 例:解下列不等式,并在数轴上表示解集(1)2(1+x)< 设问(1):解一元一次不等式的目标是什么? 学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?由学生独立完成,老师评讲设问(3)对比不等式么不同? 设问(4):怎样将不等式 变形,使变形后的不等式不含分母? 与2(1+x)<3的两边,它们在形式上有什小组合作交流,老师点拨设问(5):你能说出解一元一次不等式的基本步骤吗? 学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤. (四)辨别异同深化认识 设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处? 学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处. 相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式. 不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方程的最简形式是x=a.设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想. 设问2:解一元一次不等式每一步变形的依据是什么? 学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力. (五)练习巩固形成能力练习:解一元一次不等式 并把它的解集,在数轴上表示出来. 学生独立解不等式,老师点评 设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用. (六)归纳小结反思提高 教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题: (1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处? (2)解一元一次不等式运用了哪些数学思想? 设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识. (七)布置作业,课外反馈教科书习题9.2第1,2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整. 五、目标检测设计1·解不等式 (1)—8x<3 (2)—x≥—(3)3x—7≥4x—4设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性.2·解下列不等式,并分别把它们的解集在数轴上表示(1)3(x+2)—1≥5—2(x—2)(2)>—2设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力. 教学目标 1、知识与技能: (1)理解一元一次不等式组及其解集的意义; (2)掌握一元一次不等式组的解法。 2、过程与方法: (1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。 (2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。 3、情感、态度与价值观: (1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。 (2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。 2学情分析 本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。 另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。 3重点难点 1、教学重点:对一元一次不等式组解集的认识及其解法。 2、教学难点:对一元一次不等式组解集的认识及确定。 3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。 4教学过程4.1第一学时教学活动活动1【导入】温故知新 教师提问: 1、什么是一元一次不等式? 2、什么是一元一次不等式的解集? 3、如何求一元一次不等式的解集? 针对性练习: (设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。) 活动2【讲授】创设问题情景,探索新知 1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水 超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么? (设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。) 2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系: 超过1 200 t和不足1 500 t。 3、问题1:如何用数学式子表示这两个不等关系? 1)引导学生一起把这个实际问题转换为数学模型: 满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。 设用x min将污水抽完,则x需同时满足以下两个不等式: 30x>1200, ① 30x<1500 ② 2)教师归纳一元一次不等式组的意义: 由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。 (设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。) 4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围? 1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数, 运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。 2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解: 由不等式①,解得x>40 由不等式②,解得x<50 3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。 (设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的.良好学习习惯。) 5、问题3:如何求得这两个解集的公共部分? 学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。 (设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。) 教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。 (设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。) 形式一:用两种不同颜色表示这两个解集 1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。 (1)这两种颜色把数轴分成几个部分? (2)每一个部分分别表示哪些数? (3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②? 2)学生通过自主探究、合作交流,得到这3个问题的正确答案。 3)得出结论: 只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。 4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。 (设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。) 形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。 类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。 形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。 (设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。) 6、问题4:如何表示这个可取值范围? 教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为40 7、小结并解决课本问题:原不等式组中x的取值范围为40 (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。) 8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳: 在数轴上,若在40 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)把这些解集分别在同一条数轴上表示出来; (3)确定各个不等式解集的公共部分; (4)写出不等式组的解集。 (设计意图:及时进行小结,使学生对所学知识更加的系统化。) 一、内容和内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能·另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础·解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为xa或x 二、目标和目标的解析 (一)目标 (1)了解一元一次不等式的概念,掌握一元一次不等式的解法; (2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会·(二)目标解析 达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集·达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为xa或x 三、教学问题诊断分析 通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻·因此,运用化归思想把形式复杂的不等式转化为xa或x 本节课的教学难点为:解一元一次不等式步骤的确定·四、教学过程设计 (一)引导观察 形成概念 问题:观察下面的不等式,它们有哪些共同特征? x—726 3x2x+1 x50 —4x3 学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比·师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式·设计意图:引导学生通过观察给出不等式,归纳出它们的.共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力·(二)通过类比研究解法 练习:利用不等式的性质解不等式x—726 学生尝试独立完成练习 教师结合解题过程,指出:由x—726可得到x26+7,也就是说解不等式和解方程一样,也可以移项,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向·设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以移项,为下面类比解方程形成解不等式的步骤作好准备·设问1:解一元一次方程的依据和一般步骤是什么? 学生回忆解一元一次方程的依据是等式的性质·一般步骤是:去分母,去括号,移项,合并同类项,系数化为1·设问2:解一元一次不等式能否采用类似的步骤? 学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集·设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路·(三)例题讲解规范步骤 例:解下列不等式,并在数轴上表示解集(1)2(1+x)3(2) 设问(1):解一元一次不等式的目标是什么? 学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式·设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗? 由学生独立完成,老师评讲 设问(3)对比不等式与2(1+x)3的两边,它们在形式上有什么不同? 设问(4):怎样将不等式变形,使变形后的不等式不含分母? 小组合作交流,老师点拨 设问(5):你能说出解一元一次不等式的基本步骤吗? 学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1·设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变·设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(xa或x (四)辨别异同深化认识 设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处? 学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处·相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1·基本思想相同:都是运用化归思想,都要变为最简形式·不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质·最简形式不同:解一元一次不等式:最简形式是xa或x 设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想·设问2:解一元一次不等式每一步变形的依据是什么? 学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据·设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力·(五)练习巩固形成能力 练习:解一元一次不等式x并把它的解集,在数轴上表示出来·学生独立解不等式,老师点评 设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用·(六)归纳小结反思提高 教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题: (1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处? (2)解一元一次不等式运用了哪些数学思想? 设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识·(七)布置作业,课外反馈 教科书习题第1,2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整·五、目标检测设计 1·解不等式 (1)—8x3(2)—x—(3)3x—74x—4 设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性·2·解下列不等式,并分别把它们的解集在数轴上表示 (1)3(x+2)—15—2(x—2)(2)—2 设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力· 1、教学资源分析 采用多媒体课件,导学案进行教学。 2、教学内容分析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x ●重点 一元一次不等式的解法。 ●难点 不等式性质3在解不等式中的运用是难点 3、教学目标分析 ●目标 1.使学生了解一元一次不等式的概念; 2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。 3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。 ●目标解析 达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。 达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x 达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。 4、学习者特征分析 本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的`基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。 5、教学过程设计 <一>、问题导入,探索新知1 问题1:举出一元一次方程的例子? 【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。 问题2: 将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征? 通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。 问题3:学生举一元一次不等式的例子,学生判断。 师:判断下列各式是否是一元一次不等式? ①②③④⑤ ⑥ 【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。 <二>、探索新知2 通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x 【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x 师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题 (1)解方程解不等式 2(1+x)=3 (1) 2(1+x)<3> 学生回答不等式含有分母 师:怎样变形使不等式不含分母? 师生共同去分母解(2)题 师:通过(1)、(2)题的学习你有什么发现? 生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1. 师:在解(1)和(2)题的过程中注意些什么? 生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。 【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。 练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。 解:2x-2+2<3x> 2x-3x<-2+2 -x<0> 本节课你学会了些什么? 解一元一次不等式和解一元一次方程有哪些相同和不同之处? 【设计意图】通过问题引导学生再次回顾本节课。 <四>布置作业 教科书习题9.2第1,2,3,题 <五>目标检测 解一元一次不等式?,并把它的解集在数轴上表示出来. 6、教学评价的设计 本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。 一、教学目标: (一)知识与能力目标:(课件第2张) 1.体会解不等式的步骤,体会比较、转化的作用。 2.学生理解、巩固一元一次不等式的解法. 3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。 4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。 (二)过程与方法目标: 1.介绍一元一次不等式的概念。 2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。 3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。 4.学生将文字表达转化为数学语言,从而解决实际问题。 5.练习巩固,将本节和上节内容联系起来。 (三)情感、态度与价值目标:(课件第3张) 1.在教学过程中,学生体会数学中的比较和转化思想。 2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。 3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。 4.通过本节的学习,学生体会不等式解集的奇异的数学美。 二、教学重、难点: 1.掌握一元一次不等式的解法。 2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。 3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。 三、教学突破: 教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。 四、教 具:计算机辅助教学. 五、教学流程: (一)、复习: 教学环节 教 师 活 动 学 生 活 动 设 计 意 图 导入新课 1. 给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤) 2.学生回忆不等式的性质,并说出解不等式的关键在哪里。 3. 让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。 4. 新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。 1.学生练习,并说出解一元一次方程的步骤。 2.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页) 3.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。 4.明确本课目标,进入对新课的学习。 1. 复习解一元一次方程的解法和步骤。 2.让学生回顾性质,以加强对性质的理解、掌握。 3.运用类比思维 4.自然过度,出示课件第3、4张 (二)、新授: 教学环节 教 师 活 动 学 生 活 动 设 计 意 图 探究一元一次不等式的解法 1、 学生观察课本第61页例3 ,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。 2. 分析学生的解答,提醒学生在解不等式中常见的.错误:不等式两边同乘(除)同一个负数不等号方向要改变。 3. 激励学生完成对(2) 解答,并找学生上讲台演示。 4.强调在数轴上表示解集时的关键(出示课件第8页) 5.出示练习(出示课件第9页) 6.鼓励学生讨论课本第61页的例4 。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页) 7.指导学生归纳步骤。 8.补充适当的练习,以巩固学生所学。(出示课件第12页) 1. 类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。 2.学生类比解一元一次方程的步骤 与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页) 3.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。 4.理解、体会在数轴上表示解集的方法和关键。 5.学生组内讨论完成。 6.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。. 7.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页) 8.认真完成练习。 1.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张) 2.巩固对一般解法的理解、掌握。 3.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。 4.让学生明白不等式的解集是一个范围,而方程的解是一个值。 5.培养学生的扩展能力。 6.类比一元一次方程的解法以加深对一元一次不等式解法的理解。 7.通过动手、动脑使所学知识得到巩固。 8.巩固所学。 (三)、小结与巩固: 教学环节 教 师 活 动 学 生 活 动 设 计 意 图 小结与巩固 1.引导学生对本课知识进行归纳。 2.学生完成后(出示课件第13、14页)。 3.练习与巩固。 1.学生组内讨论小结,组长帮助组员对知识巩固、提升。 2.学生加强理解。 3.完成练习:书63页第4题,第5(2、4)题。 1.培养学生总结、归纳的能力。 2.点拨学生对知识的理解与掌握。 3.巩固本课所学。 【一元一次不等式教学设计】相关文章: 一元一次不等式教学设计03-21 一元一次不等式组教学设计03-23 一元一次不等式教学设计15篇03-21 一元一次不等式教学设计14篇04-08 【推荐】一元一次不等式教学设计7篇10-15 一元一次不等式组教学设计3篇03-23 一元一次不等式组教学反思04-22 一元一次不等式教学反思(精选22篇)01-17 一元一次不等式教案02-23一元一次不等式教学设计5
一元一次不等式教学设计6
一元一次不等式教学设计7
一元一次不等式教学设计8
一元一次不等式教学设计9
一元一次不等式教学设计10
一元一次不等式教学设计11
一元一次不等式教学设计12
一元一次不等式教学设计13
一元一次不等式教学设计14
一元一次不等式教学设计15