- 相关推荐
《圆的周长》优秀教学设计(精选12篇)
作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?以下是小编整理的《圆的周长》优秀教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《圆的周长》优秀教学设计 篇1
【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的'周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3.1415926———3.1415927倍之间。这是当时世界上算得最精确的数值————圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3.14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3.14倍()
② 圆周率就是圆周长除以它直径的商 ()
③ C =2π r =πd()
④ 圆周率与直径的长短无关 ()
⑤ π> 3.14()
⑥ 半圆的周长就是圆周长的一半()
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6。28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书————看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变————不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12。56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
《圆的周长》优秀教学设计 篇2
教学内容:
圆的周长
教学重点:
理解圆周率的意义。
教学难点:
探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的`局限性
(二)猜想。(三)实验。
1.小组协作。
周长c (厘米)
直径d (厘米)
周长与直径的比值 (保留两位小数)
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
《圆的周长》优秀教学设计 篇3
一、素质教育目标
(一)知识教学点
1、认识圆的周长,知道圆周率的意义。
2、理解和掌握圆周长的计算公式。
(二)能力训练点
1、会用公式正确计算圆的周长。
2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。
(三)德育渗透点
1、通过对圆的周长测量方法的探究,渗透化归思想。
2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。
(四)美育渗透点
通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。
二、学法引导
1、引导学生操作、实验,从中发现规律。
2、运用周长公式,指导学生计算。
三、教学重点:
圆周长的计算方法
四、教学难点:
圆周率意义的理解。
五、教具、学具准备:
微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。
六、教学过程:
(一)认识圆的周长
1、创设情境
(屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。
2、迁移类推
(1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)
(2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。
3、实际感知
(1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。
(2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。
(二)测量圆的周长
圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。
学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。
师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?
(三)引导发现圆的周长与直径的关系:
1、圆的.周长与什么有关系?
启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?
学生小组讨论后汇报结果。
微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。
引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。
2、圆的周长与直径有什么关系?
(1)测量计算
小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。
请同学汇报所填数据。
观察这些数据,能发现什么呢?
生概括出:每个圆的周长是它直径的3倍多一些。
(2)媒体演示:
屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。
(3)引导概括
其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。
3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。
表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。
教学生读写π,介绍π在计算时如何取值。
学生自己读书中介绍祖冲之的一段知识。
(四)归纳圆的周长的计算公式。
学生讨论:
(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd?或C=2πr
(五)应用圆周长计算公式,解决简单的实际问题。
小黑板出示例1:一张圆桌面的直径是0。95米,这张圆桌面的周长是多少米?(得数保留两位小数)
指名读题,自己列式解答(1生板演)
(六)订正时教师强调说明:
(1)解答时不必写出公式。
(2)π取两位小数,计算时就不再看成近似的数了。
(3)计算中取近似值的那一步要用“≈”表示。
完成例1下的做一做,实物投影订正。
(七)看书质疑,全课小结。
(八)课堂练习
1、判断正误,并说明理由。
(1)圆的周长是直径的3.14倍。?()
(2)大圆的圆周率比小圆的圆周率大。()
(3)π=3.14?()
2、求下面各图的周长(只列式不计算)
3、求下面各圆的周长
(1)d=2米?(2)d=1.5厘米(3)d=4分米
r=6分米r=3米r=1.5厘米
分三组进行解答,订正时强调单位名称。
4、解答简单应用题
(1)一个圆形花池,直径是4.2米,周长是多少?
(2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)
(3)一种压路机的前轮直径是1.32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。
(九)课后练习
量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?
《圆的周长》优秀教学设计 篇4
一、设计思路
本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。
二、教学过程与设计意图
教学目标:
1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。
2、结合教学内容进行爱国主义教育,激发学生民族自豪感。
3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。
教学重点:掌握理解圆的周长公式推导过程
教学过程:
A、创设情境·激疑——提出问题
(出示摩托车里程表)
(1)师:这里为什么能反映摩托车行的路程呢?
(学生思考后师出示有计数器的跳绳作提示)
(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。
(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。
(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。
(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?
设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。
B、师生共同提出假设
(1)请学生回忆正方形周长和边长的关系(边长×4)。
(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的.。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?
生答:砍下来量一量
师问:这个方法简单,你们同意吗?学生思考后回答:
生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径
生2:在古树中间钻个小孔,量一量
生3:用四个木头搭成一个正方形,边长就是直径
(3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:
生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)
生2:用根长绳让它跟着轮子转
生3:装一个象跳绳一样的计数器,再算一算。
师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。
设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。
三、实践反思
1、联系学生生活实际,有利于激发学生学习的兴趣。
华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。
2、让学生带着问题去学习,有利于学生主动探索知识
美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。
3、提高应用意识,努力体现课堂教学的开放性。
生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。
4、要讨论和研究的问题
(1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?
(2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?
《圆的周长》优秀教学设计 篇5
一、教学目标
1、 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2、 培养学生的观察、比较、分析、综合及动手操作能力;
3、 结合圆周率的学习,对学生进行爱国主义教育。
二、教学准备
一元硬币、圆形纸片等实物以及直尺,测量结果记录表
三、教学过程:
<一>、创设情境,引起猜想:
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1、回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2、认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2、 怎样才能知道这个正方形的周长?说说你是怎么想的?
3、 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
(四)讨论圆周长的测量方法
1、讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法:(板书)
化曲为直
4、创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?
5、明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)
(五)合理猜想,强化主体:
1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答
2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4、小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
<二>、实际动手,发现规律:
(一)分组合作测算
1、明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象 圆的'周长(厘米) 圆的直径(厘米) 周长与直径的关系
2、生利用学具动手操作,师巡视指导、收集信息。
3、集体反馈数据(选取3~4组实验结果,黑板板书展示)
(二)发现规律,初步认识圆周率
1、看了几组同学的测算结果,你有什么发现?
2、虽然倍数不大一样,但周长大多是直径的几倍?
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3、这个倍数究竟是多少呢?我们来看一段资料。
(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4、理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5、解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1、 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 = 直径× 圆周率
C =πd
2、 如果知道圆的半径,又该怎样计算圆的周长呢
板书:C =2πr
追问:那也就是说,圆的周长总是半径的多少倍
<三>、巩固练习,形成能力
1、判断并说明理由:π = 3.14 ( )
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
<四>、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
《圆的周长》优秀教学设计 篇6
教学内容
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第98~99页例4、例5以及相应的“试一试”“练一练”,练习十八第1~4题。
教学目标
1、使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2、使学生在活动中培养初步的动手操作能力和空间观念。
3、结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、操作导入
谈话引入,并指名说说怎样测量圆的直径。
每个同学拿出事先准备好的三个圆形物体(圆形铁环、一元硬币、塑料胶带或其他任意一个圆)。
学生独立测量圆的直径,比一比谁量得最精确。
组织交流。
[思考:量直径是上一节课的内容。在教学新知之前进行复习,意图有两点:一是因为直径与周长的关系是本节课的主要研究内容,量直径能为研究圆周率和推导圆的周长公式服务;二是让学生练习比较精确地测量直径,为接下来比较精确地测量圆的周长做必要的准备。]
二、揭示课题
谈话:今天这节课我们一起来研究圆的周长。(板书课题:圆的周长)
三、自主探索
1、出示圆形铁环。
谈话:这是一个用铁丝围成的圆,谁上来指一指这个圆的周长?(学生指出圆的周长)同桌讨论一下,什么是圆的周长?(引导学生概括圆的周长的含义)
提问:你能量出这个铁丝围成的圆的周长吗?
学生动手尝试测量。(可能会想到把铁丝剪开、拉直,再测量铁丝的长。)
指名介绍方法,并上台进行测量演示。
2、出示一元硬币。
提问:你能测量这枚硬币的周长吗?
指名说说方法,学生动手测量。
3、猜测联系。
提问:对于刚才这几种测量圆周长的方法,你有何评价?
谈话:回忆一下,我们以前是怎样求长方形、正方形的周长的?
引导:是啊,用绕线法和滚圆法测量圆的周长比较麻烦,测量的结果也不够准确,我们应该寻找更简便的计算圆周长的方法。那么,圆的周长与它的什么有关系呢?(与直径的长短有关)
追问:圆的周长与它的直径之间可能有怎样的关系呢?(学生提出各种猜想,也可能会提出圆的周长等于直径的3.14倍)
谈话:大家能提出不同的猜想,这很好!不过猜想只是猜想,圆的周长与直径到底有什么关系,还需要我们进一步研究与验证。
4、研究验证。
出示活动要求:
(1)每个同学选择一个圆形物体,分别测量它的直径和周长,并计算圆的周长除以直径的商。
(2)把你们小组测量与计算的结果整理在下面的表格里(表格略)。
学生活动后,以小组为单位,组织汇报。
提问:通过对实验结果的分析,你有什么发现?
小结:其实,圆的周长总是直径的3倍多一些,而且这个倍数是一个固定不变的数。我们把圆的周长除以直径的商称为圆周率。一般情况下,人们用字母π表示圆周率。它是一个无限不循环小数,它的值等于3.1415926……为了计算方便,我们取它的近似值3.14。(板书:圆周率π)
谈话:关于圆周率还有一段值得我们骄傲的历史呢!请同学们打开书本,读一读第120页下面的“你知道吗”。
提问:读了这段介绍,你知道了什么,有什么感想?还想知道些什么?
提问:为什么我们研究的结果和圆周率的实际值有一定的.误差?
[思考:量铁丝围成的圆、一元硬币、塑料胶带等圆形物体的周长,是看似简单、重复的操作,但实际上不断激起了学生思维的浪花。第一次量铁丝围成的圆的周长,几乎所有的学生都能想到将铁丝围成的圆剪开、拉直成一条线段再测量,在操作中充分感受了“化曲为直”的数学思想。量一元硬币的周长,则不能直接剪开、拉直,而必须采用绕线法或滚圆法,这在引导学生灵活解决问题的同时,又使学生感受到实际测量得到周长的方法并不方便,从而产生探究圆周长计算公式的心理需求。在此基础上,再让学生分组自由选择圆形物体测量周长,探究圆的周长和直径的关系,激发了学生参与学习活动的积极性。]
5、推导公式。
提问:根据圆周率的意义,怎样求圆的周长?(板书:圆的周长=圆周率×直径)
提问:如果用C表示圆的周长,怎样用字母表示圆周长的计算公式呢?(板书:C=πd)
谈话:你能运用圆周长的计算公式解决一些实际问题吗?
出示“试一试”。
学生独立解决后,组织反馈。
四、练习巩固
1、判断下面的说法是否正确。
(1)圆周率等于3.14。
(2)圆的周长总是直径的π倍。
(3)一个半圆形的周长是这个圆周长的一半。
学生判断后,让学生说一说自己是怎
样想的。
2、一个圆形木桶的外直径是4、8分米,在它的外面加一道铁箍,这道铁箍长多少米?(接头处忽略不计)
让学生说一说题目的意思,再独立解答。
3、地球赤道的半径约是6278千米,绕赤道走一圈有多少千米?
先让学生估计地球赤道的周长,再独立计算。
五、课堂总结(略)。
《圆的周长》优秀教学设计 篇7
【教学内容】
新课标人教版六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2.能利用圆的周长的计算公式解决一些简单的数学问题。
3.培养学生的观察、比较、分析、综合及动手操作能力。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的`长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,
师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的圆的周长是不同的。
师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
《圆的周长》优秀教学设计 篇8
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆周长的计算公式。
教具准备:
多媒体课件三套、系绳的小球。
学具准备:
塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的`3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
学生推导圆周长计算公式:c=πd;c=2πr。
要求圆的周长,你必须知道什么?(直径或半径)
4.运用公式计算。
(1)求下面各圆的周长,只列式不计算。
课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)
(2)出示例1。
①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?
②学生尝试练习,反馈评价。
③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第112页“做一做”。
(4)看书质疑。
三、运用新知,解决问题
1.下面的说法对吗?并说明理由。
(1)圆的周长是它直径的π倍。()
(2)大圆的圆周率大于小圆的圆周率。()
(3)π=3.14()
2.测量一圆形实物直径,计算它的周长。
3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)
四、总结全课,储存新知。
这节课你自己运用了哪些学习方法,学到了哪些知识?
五、思考题。
课件演示:大圆的周长和两个小圆的周长之和同样长吗?
《圆的周长》优秀教学设计 篇9
教学目标:
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点:推导圆的周长的计算公式,准确计算圆的周长。
教学难点:理解圆周率的意义。
教具准备:圆片、铁圈、绳子、直尺。
教学方法:观察、演示、小组合作交流
教学过程:
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的.圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
二、经历探究全程,验证猜想发现。
一圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
二圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)
三、感受数学文化,激发情感教育。
1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
2、介绍计算机计算圆周率的情况。
3、教学圆周率:π≈3.14。
四、归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
《圆的周长》优秀教学设计 篇10
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
5、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、问题导入
同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。
二、探究新知
看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)
同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。
请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的`周长。请同学们把圆的周长的概念默记两遍吧。
请同学们拿出你手边的圆,同桌互相指一指它的周长吧。
三、合作探究
老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!
好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。
老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。
四、找出关联
同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。
我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?
五、合作解疑
请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。
好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)
好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。
请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。
六、知识渗透
说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。
七、公式推导
既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。
请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。
八、解决问题
1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。
2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)
这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。
3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?
《圆的周长》优秀教学设计 篇11
教学目的
1、理解圆周率的意义。
2、理解周长的概念,并掌握圆周长的计算公式和推导过程。
3、能运用公式求圆的周长或直径、半径。
重点
圆的周长计算公式的推导,能利用公式正确的计算。
难点
深入理解圆周率的意义及圆周长计算公式的推导。
教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格
一、复习导入(4分钟)
(一)出示菜板和圆桌图
师:
1、这两个都是什么平面图形
2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)
3、还有什么不同?(圆的大小不同,圆的.半径不同)
4、也可以说是圆的直径不同。
(二)出示图与对话框
师:
1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)
2、问:铁皮的长度实际上就是圆的什么?
预设:
1、圆一周额长度(这个长度就是圆的周长)或
2、圆的周长。
二、新课教授
(一)活动一:摸圆的周长(3分钟)
师:
1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。
2、从哪里开始到哪里结束?
预设:
1、从这个地方开始,也在这里结束。
2、小结:起点和终点是同一点。
3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)
4、围成圆的一周的曲线的长是圆的周长。
(二)活动二:周长的测量(4分钟)
师:
1、曲线图形的周长你会测量吗?(不会)
2、同方谈论一下,你想要怎样测量。
3、1生说绕绳法。他的方法听懂的举手。
预设:
1、听懂人多,师演示一下。
2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。
师:
1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。
2、教师观察指导。
(三)汇报演示(4分钟)
师:
1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。
2、这个办法有什么缺点?(不精确会产生误差)
3、除了这个方法还有没有其他办法?
预设:
1、生能主动说出。
2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)
3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。
师:
1、生自己操作
2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。
3、测量中英注意什么?有误差吗?听懂的同学举手。
4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)
(四)动图播放绕绳法和滚动法
1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。
2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。
3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)
4、为什么?(圆的大小或圆的半径、直径不一样)
三、猜想并探索(15分钟)
(一)猜想(4分钟)
1、直径不一样周长就不一样,那周长和直径有什么关系呢?
2、你想把周长和直径怎样比?(周长除以直径、周长减直径)
3、可以研究周长和直径吗?(不可以,每依据)
4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)
5、用你想用的方法研究一下周长与直径的关系。
6、生在黑板上记录“周长÷直径”、或“周长减直径”。
(二)探索(8分钟)
1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。
2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。
3、它叫圆周率,读作π,通常计算式取3.14。
(三)公式推导(3分钟)
1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)
2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?
3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)
四、巩固练习(10分钟)
(一)基础题一道
(二)能力提升两道
(三)拓展题一道
五、课后作业布置
《圆的周长》优秀教学设计 篇12
【教学目标】
1、让学生明白什么是圆的周长。
2、理解并掌握圆周率的好处和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。
5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作潜力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、激情导入
1、动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一)复习正方形的周长,猜想圆的周长可能和什么有关系。
1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)
4、猜想:你觉得圆的周长可能和什么有关系?
(二)测量验证
1、教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,比较发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的`倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三)介绍圆周率
1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四)推导公式
1、到此刻,你会计算圆的周长吗?怎样算?
2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、明白半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、钟面直径40厘米,钟面的周长是多少厘米?
4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
透过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。