八年级数学教案

时间:2023-01-08 18:38:58 教案 投诉 投稿

八年级数学教案15篇

  作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?以下是小编帮大家整理的八年级数学教案,希望能够帮助到大家。

八年级数学教案15篇

八年级数学教案1

  【教学目标】

  1、了解三角形的中位线的概念

  2、了解三角形的中位线的性质

  3、探索三角形的中位线的性质的一些简单的应用

  【教学重点、难点】

  重点:三角形的中位线定理。

  难点:三角形的中位线定理的证明中添加辅助线的思想方法。

  【教学过程】

  (一)创设情景,引入新课

  1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

  2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

  (1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

  (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

  3、引导学生概括出中位线的概念。

  问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

  启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

  4、猜想:DE与BC的关系?(位置关系与数量关系)

  (二)、师生互动,探究新知

  1、证明你的猜想

  引导学生写出已知,求证,并启发分析。

  (已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

  启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

  启发2:证明线段的倍分的方法有哪些?(截长或补短)

  学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

  证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四边形BCFD是平行四边形(一组对边平行且相等的.四边形是平行四边形),

  ∴DF∥BC(根据什么?),

  ∴DE 1/2BC

  2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

  (三)学以致用、落实新知

  1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

  2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

  3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

  求证:四边形EFGH是平行四边形。

  启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

  启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

  证明:如图,连接AC。

  ∵EF是⊿ABC的中位线,

  ∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

  挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

  (四)学生练习,巩固新知

  1、请回答引例中的问题(1)

  2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

  (五)小结回顾,反思提高

  今天你学到了什么?还有什么困惑?

八年级数学教案2

  一、学习目标

  1.多项式除以单项式的运算法则及其应用。

  2.多项式除以单项式的运算算理。

  二、重点难点

  重点:多项式除以单项式的运算法则及其应用。

  难点:探索多项式与单项式相除的运算法则的.过程。

  三、合作学习

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1.计算下列各式:

  (1)(am+bm)÷m;

  (2)(a2+ab)÷a;

  (3)(4x2y+2xy2)÷2xy。

  2.提问:

  ①说说你是怎样计算的;

  ②还有什么发现吗?

  (三)总结法则

  1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX

  2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX

  四、精讲精练

  例:(1)(12a3—6a2+3a)÷3a;

  (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

  (3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  随堂练习:教科书练习。

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

  E、多项式除以单项式法则。

八年级数学教案3

  总课时:7课时 使用人:

  备课时间:第八周 上课时间:第十周

  第4课时:5、2平面直角坐标系(2)

  教学目标

  知识与技能

  1.在给定的直角坐标系下,会根据坐标描出点的位置;

  2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

  过程与方法

  1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;

  2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

  情感态度与价值观

  通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

  教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

  教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

  教学过程

  第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)

  在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的`点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

  练习:指出下列 各点以及所在象限或坐标轴:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)

  由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

  第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)

  1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 学生操作完毕后)

  2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  观察所得的图形,你觉得它像什么?

  分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?

  (出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?

  这个图形像一栋房子旁边还有一棵大树。

  3.做一做

  (出示投影)

  在书上已建立的直角坐标系画,要求每位同学独立完成。

  (学生描点、画图)

  (拿出一位做对的学生的作品投影)

  你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

  (像猫脸)

  第三环节 学有所用.(10分钟,先独立完成,后小组讨论)

  (补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  观察所得的图形,你觉得它像什么?(像移动的菱形)

  2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

  先独立完成,然后小组讨论是否正确。

  第四环节 感悟与收获(5分钟,学生总结,全班交流)

  本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

  在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

  第五环节 布置作业

  习题5、4

  A组(优等生)1、2、3

  B组(中等生)1、2

  C组(后三分之一生)1、2

八年级数学教案4

  【教学目标】

  一、教学知识点

  1.命题的组成.

  2.命题真假的判断。

  二、能力训练要求:

  1.使学生能够分清命题的条件和结论,能判断命题的真假

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

  三、情感与价值观要求:

  1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

  2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

  3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

  【教学重点】准确的找出命题的条件和结论

  【教学难点】理解判断一个真命题需要证明

  【教学方】探讨、合作交流

  【教具准备】投影片

  【教学过程】

  一、情景创设、引入新课

  师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

  新课:

  (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

  1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

  2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

  4.如果一个四边形的对角线相等,那么这个四边形是矩形。

  5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

  师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

  二、例题讲解:

  例1:师:下列命题的`条件是什么?结论是什么?

  1.如果两个角相等,那么他们是对顶角;

  2.如果a>b,b>c,那么a=c;

  3.两角和其中一角的对边对应相等的两个三角形全等;

  4.菱形的四条边都相等;

  5.全等三角形的面积相等。

  例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

  2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

  例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

  师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

  教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

  三、思维拓展:

  拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

  教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

  (1)首先给学生介绍欧几里得的《原本》

  (2)引出概念:公理、定理,证明

  (3)启发学生,现在如何证实一个命题的正确性

  (4)给出本套教材所选用如下6个命题作为公理

  (5)等式性质、不等式有关性质,等量代换也看作定理。

  拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

  建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

  练习书p197习题6.31

  四、问题式总结

  师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

  建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

  作业:书p197习题6.32、3

  板书设计:

  定义与命题

  课时2

  条件

  1.命题的结构特征

  结论

  1.假命题——可以举反例

  2.命题真假的判别

  2.真命题——需要证明 学生活动一——

  探索命题的结构特征

  学生观察、分组讨论,得出结论:

  (1)这五个命题都是用“如果……那么……”形式叙述的

  (2)这五个命题都是由已知得到结论

  (3)这五个命题都有条件和结论

  学生活动二——

  探索命题的条件和结论

  生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

  学生活动三

  探索命题的真假——如何判断假命题

  生:可以举一个例子,说明命题1是不正确的,如图:

  已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

  生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

  生:由此说明:命题1、2是不正确的

  生:命题3、4、5是正确的

  学生活动四

  探索命题的真假——如何证实一个命题是真命题

  学生交流:

  生:用我们以前学过的观察、实验、验证特例等方法

  生:这些方法往往并不可靠

  生:能够根据已知道的真命题证实呢?

  生:那已经知道的真命题又是如何证实的?

  生:那可怎么办呢?

  生:可通过证明的方法

  学生分小组讨论得出结论

  生:命题的结构特征:条件和结论

  生:命题有真假之分

  生:可以通过举反例的方法判断假命题

  生:可通过证明的方法证实真命题

八年级数学教案5

  创设情境

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。

  根据平行四边形的定义,我们研究了平行四边形的`其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  探究归纳

  平行四边形的判定方法:

  证明:两组对边分别相等的四边形是平行四边形

  已知:

  求证:

  做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?

  学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。

  观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

  练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形

八年级数学教案6

  一、教学目标:

  1、加深对加权平均数的理解

  2、会根据频数分布表求加权平均数,从而解决一些实际问题

  3、会用计算器求加权平均数的值

  二、重点、难点和难点的突破方法:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  3、难点的突破方法:

  首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的'好处是简化了计算量。

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

  三、例习题的意图分析

  1、教材P140探究栏目的意图。

  (1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

  (2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

  2、教材P140的思考的意图。

  (1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

  (2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

  3、P141利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

  四、课堂引入

  采用教材原有的引入问题,设计的几个问题如下:

  (1)、请同学读P140探究问题,依据统计表可以读出哪些信息

  (2)、这里的组中值指什么,它是怎样确定的?

  (3)、第二组数据的频数5指什么呢?

  (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

  五、随堂练习

  1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

  所用时间t(分钟)人数

  0

  0<≤ 6

  20

  30

  40

  50

  (1)、第二组数据的组中值是多少?

  (2)、求该班学生平均每天做数学作业所用时间

  2、某班40名学生身高情况如下图,

  请计算该班学生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、课后练习:

  1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

  部门A B C D E F G

  人数1 1 2 4 2 2 5

  每人创得利润20 5 2.5 2 1.5 1.5 1.2

  该公司每人所创年利润的平均数是多少万元?

  2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

  年龄频数

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

  答案:1.约2.95万元2.约29岁3.60.54分贝

八年级数学教案7

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力.

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用.

  2.难点:灵活地应用公式法进行因式分解.

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知识迁移】

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【学生活动】从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例学习,应用所学

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

  三、随堂练习,巩固深化

  课本P170练习第1、2题.

  【探研时空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、课堂总结,发展潜能

  由于多项式的`因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

  五、布置作业,专题突破

八年级数学教案8

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的`高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案9

  一、课堂导入

  回顾平行四边的性质定理及定义

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  二、新课讲解

  平行四边形的判定:

  (定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  (平行四边形判定定理):

  (一)两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,BC=DA。

  求证:四边ABCD是平行四边形。

  分析:判定平行四边形的'依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

  板书证明过程。

  小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

  (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

  活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

  设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

八年级数学教案10

  一、教学目标:

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

  2、会求一组数据的极差。

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差。

  2、难点:本节课内容较容易接受,不存在难点.

  三、课堂引入:

  下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法.

  经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的.平均气温相等,都是12度.

  这是不是说,两个时段的气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图.

  观察一下,它们有区别吗?说说你观察得到的结果.

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).

  四、例习题分析

  本节课在教材中没有相应的例题,教材P152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

八年级数学教案11

  【教学目标】

  知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

  过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

  情感、态度与价值观

  培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

  【教学重难点】

  重点:掌握用提公因式法把多项式分解因式.

  难点:正确地确定多项式的最大公因式.

  关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  【教学过程】

  一、回顾交流,导入新知

  【复习交流】

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的.形式,并说明理由.

  【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

  二、小组合作,探究方法

  教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  三、范例学习,应用所学

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用简便的方法计算:

  0.84×12+12×0.6-0.44×12.

  【教师活动】引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本115页练习第1、2、3题.

  【探研时空】

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

  六、布置作业,专题突破

  课本119页习题14.3第1、4(1)、6题.

八年级数学教案12

  第三十四学时:14.2.1平方差公式

  一、学习目标:

  1.经历探索平方差公式的过程。

  2.会推导平方差公式,并能运用公式进行简单的运算。

  二、重点难点

  重点:平方差公式的推导和应用;

  难点:理解平方差公式的结构特征,灵活应用平方差公式。

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)20xx×1999(2)998×1002

  导入新课:计算下列多项式的积.

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

  (4)(x+5y)(x—5y)。

  结论:两个数的和与这两个数的差的`积,等于这两个数的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x—2);

  (2)(b+2a)(2a—b);

  (3)(—x+2y)(—x—2y)。

  例2:计算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  随堂练习

  计算:

  (1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

  (4)(a5—b2)(a5+b2);

  (5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小结

  (a+b)(a—b)=a2—b2

八年级数学教案13

  ●教学目标

  (一)教学知识点

  1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

  2.能根据相似比进行计 算.

  (二)能力训练要求

  1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.

  2.能根据相似比求长度和角度,培养学生的运用能力.

  (三)情感与价值观要求

  通过与相似多边形有关概念的'类比,渗透类比的教学思想,并领会特殊与一般的关系.

  ●教学重点 相似三角形的定义及运用.

  ●教学难点 根据定义求线段长或角的度数.

  ●教学过程

  Ⅰ.创设问题情境,引入新课

  今天, 我们就来研究相似三角形.

  Ⅱ.新课讲解

  1.相似三角形的定义及记法

  三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF

  其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?

  所以 D、E、F. .

  3.议一议,学生讨论

  (1)两个全等三角形一定相似吗?为什么?

  (2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?

  (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

  结论:两 个全等三角形一定相似.

  两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.

  4.例题

  例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度数。(2)DE的长.

  5.想一想

  在例2的条件下,图中有哪些线段成比例?

  Ⅲ.课堂练习 P129

  Ⅳ.课时小结

  相似三角形的 判定方法定义法.

  Ⅴ.课后作业

八年级数学教案14

  学习重点:函数的概念 及确定自变量的取值范围。

  学习难点:认识函数,领会函数的意义。

  【自主复习知识准备】

  请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

  【自主探究知识应用】

  请看书72——74页内容,完成下列问题:

  1、 思考书中第72页的问题,归纳出变量之间的关系。

  2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

  3、 归纳出函数的定义,明确函数定义中必须要满足的条件。

  归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  补充小结:

  (1)函数的定义:

  (2)必须是一个变化过程;

  (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。

  三、巩固与拓展:

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

  (1)写出表示y与x的函数关系式.

  (2)指出自变量x的取值范围.

  (3) 汽车行驶200千米时,油箱中还有多少汽油?

  【当堂检测知识升华】

  1、判断下列变量之间是不是函数关系:

  (1)长方形的宽一定时,其长与面积;

  (2)等腰三角形的`底边长与面积;

  (3)某人的年龄与身高;

  2、写出下列函数的解析式.

  (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

  (2)汽车加油时,加油枪的流量为10L/min.

  ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

  ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系.

  (3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

  八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

八年级数学教案15

  教学目标:

  1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

  2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

  3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

  重点与难点:

  重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

  难点:分析典型图案的设计意图。

  疑点:在设计的图案中清晰地表现自己的设计意图

  教具学具准备:

  提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

  教学过程设计:

  1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

  明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的`思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

  2、课本

  1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

  评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

  评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

  (二)课内练习

  (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

  (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

  (三)议一议

  生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

  (四)课时小结

  本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

  通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

  八年级数学上册教案(五)延伸拓展

  进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

【八年级数学教案】相关文章:

八年级数学教案11-16

八年级上册数学教案01-13

八年级上册人教版数学教案02-27

八年级数学教案(15篇)01-31

关于八年级数学教案01-11

八年级数学教案(汇编15篇)02-01

八年级数学教案(通用15篇)01-31

八年级数学教案(集合15篇)02-23

八年级数学教案通用15篇03-20