二次根式教案

时间:2023-04-26 15:12:40 教案 投诉 投稿

二次根式教案模板汇总五篇

  在教学工作者实际的教学活动中,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?下面是小编精心整理的二次根式教案5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

二次根式教案模板汇总五篇

二次根式教案 篇1

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的值的思路。

  答:所求的代数式中,相减的两个式子的.分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

二次根式教案 篇2

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的`算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

二次根式教案 篇3

  教学目的

  1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

  2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

  教学重点

  最简二次根式的定义。

  教学难点

  一个二次根式化成最简二次根式的方法。

  教学过程

  一、复习引入

  1.把下列各根式化简,并说出化简的根据:

  2.引导学生观察考虑:

  化简前后的根式,被开方数有什么不同?

  化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

  3.启发学生回答:

  二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

  二、讲解新课

  1.总结学生回答的内容后,给出最简二次根式定义:

  满足下列两个条件的二次根式叫做最简二次根式:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽的因数或因式。

  最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

  2.练习:

  下列各根式是否为最简二次根式,不是最简二次根式的`说明原因:

  3.例题:

  例1 把下列各式化成最简二次根式:

  例2 把下列各式化成最简二次根式:

  4.总结

  把二次根式化成最简二次根式的根据是什么?应用了什么方法?

  当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

  当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

  此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

  三、巩固练习

  1.把下列各式化成最简二次根式:

  2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  四、小结

  本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。

  五、布置作业

  下列各式化成最简二次根式:

二次根式教案 篇4

  一、内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的`性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1)

  (2)

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1)

  (2)

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如 ___________ ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

二次根式教案 篇5

  一、内容和内容解析

  1.内容

  二次根式的概念.

  2.内容解析

  本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.

  教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.

  本节课的教学重点是:了解二次根式的概念;

  二、目标和目标解析

  1.教学目标

  (1)体会研究二次根式是实际的需要.

  (2)了解二次根式的概念.

  2. 教学目标解析

  (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

  (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

  三、教学问题诊断分析

  对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.

  本节课的教学难点为:理解二次根式的双重非负性.

  四、教学过程设计

  1.创设情境,提出问题

  问题1你能用带有根号的的式子填空吗?

  (1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

  (2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.

  (3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

  师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.

  【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

  问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

  师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

  【设计意图】为概括二次根式的概念作铺垫.

  2.抽象概括,形成概念

  问题3 你能用一个式子表示一个非负数的算术平方根吗?

  师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

  【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

  追问:在二次根式的概念中,为什么要强调“a≥0”?

  师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

  【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

  3.辨析概念,应用巩固

  例1 当 时怎样的实数时, 在实数范围内有意义?

  师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的'被开方数为非负数的理解.

  例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

  师生活动:先让学生独立思考,再追问.

  【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

  问题4 你能比较 与0的大小吗?

  师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

  【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.

  4.综合运用,巩固提高

  练习1 完成教科书第3页的练习.

  练习2 当x 是什么实数时,下列各式有意义.

  (1) ;(2) ;(3) ;(4) .

  【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.

  5.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

  (1)本节课你学到了哪一类新的式子?

  (2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

  (3)二次根式与算术平方根有什么关系?

  师生活动:教师引导,学生小结.

  【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.

  6.布置作业:

  教科书习题16.1第1,3,5, 7,10题.

  五、目标检测设计

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

  2. 当 时,二次根式 无意义.

  【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

  3.当 时,二次根式 有最小值,其最小值是 .

  【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

  4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

  【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

【二次根式教案】相关文章:

二次根式教案02-15

二次根式的加减教案01-19

《二次根式的运算》的教案08-25

二次根式教案4篇02-05

二次根式教案7篇01-24

二次根式数学教案11-26

二次根式教案(15篇)02-27

二次根式教案15篇02-16

精选二次根式教案三篇08-18

实用的二次根式教案4篇11-01