- 八年级数学教案 推荐度:
- 八年级数学教案 推荐度:
- 八年级上册数学教案 推荐度:
- 相关推荐
八年级数学教案集锦15篇
作为一名人民教师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么什么样的教案才是好的呢?以下是小编为大家整理的八年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学教案1
教学目标
(一)教学知识点
1、等腰三角形的概念、
2、等腰三角形的性质、
3、等腰三角形的概念及性质的应用、
1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、
2、探索并掌握等腰三角形的性质、
(三)情感与价值观要求
通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、
教学重点
1、等腰三角形的概念及性质、
2、等腰三角形性质的应用、
教学难点
等腰三角形三线合一的性质的理解及其应用、
教学方法
探究归纳法、
教具准备
师:多媒体课件、投影仪;
生:硬纸、剪刀、
教学过程
1、提出问题,创设情境
(师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
(生)有的三角形是轴对称图形,有的三角形不是。
(师)那什么样的三角形是轴对称图形?
(生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
(师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
2、导入新课
(师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
(生乙)在甲同学的做法中,A点可以取直线L上的任意一点。
(师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。
(师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
(师)有了上述概念,同学们来想一想。
(演示课件)
1、等腰三角形是轴对称图形吗?请找出它的`对称轴。
2、等腰三角形的两底角有什么关系?
3、顶角的平分线所在的直线是等腰三角形的对称轴吗?
4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
(生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
(师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
(生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。
(生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。
(生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。
(生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。
(师)你们说的是同一条直线吗?大家来动手折叠、观察。
(生齐声)它们是同一条直线。
(师)很好、现在同学们来归纳等腰三角形的性质。。
(生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
(师)很好,大家看屏幕。
(演示课件)
等腰三角形的性质:
1、等腰三角形的两个底角相等(简写成“等边对等角”)
2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、
(师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)
(投影仪演示学生证明过程)
(生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为
所以BAD≌CAD(SSS)、
所以∠B=∠C、
(生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以BAD≌CAD、
所以BD=CD,∠BDA=∠CDA=∠BDC=90°。
(师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。
(演示课件)
(例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、
(师)同学们先思考一下,我们再来分析这个题、
(生)根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。
(师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
(课件演示)
(例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、
设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、
于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。
在ABC中,∠A=35°,∠ABC=∠C=72°、
(师)下面我们通过练习来巩固这节课所学的知识、
3、随堂练习
(一)课本P141练习1、2、3。
练习
1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、
答案:(1)72°(2)30°
2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?
答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、
3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、
答:∠B=77°,∠C=38、5°、
(二)阅读课本P138~P140,然后小结、
4、课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、
5、课后作业
(一)课本P147─1、3、4、8题、
(二)1、预习课本P141~P143、
2、预习提纲:等腰三角形的判定、
6、活动与探究
如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、
求证:AE=CE、
过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、
结果:
证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中
ADP≌ADC、
∠P=∠ACD、
又DE∥AP,
∠4=∠P、
∠4=∠ACD、
DE=EC、
同理可证:AE=DE、
AE=CE、
板书设计
八年级数学教案2
教学目标:
【知识与技能】
1、理解并掌握等腰三角形的性质。
2、会用符号语言表示等腰三角形的性质。
3、能运用等腰三角形性质进行证明和计算。
【过程与方法】
1、通过观察等腰三角形的对称性,发展学生的形象思维。
2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。
3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。
【情感态度】
引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。
【教学重点】
等腰三角形的性质及应用。
【教学难点】
等腰三角形的证明。
教学过程:
一、情境导入,初步认识
问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。
可按下列方法做出:
作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。
问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?
教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。
在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?
教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。
二、思考探究,获取新知
教师依据学生讨论发言的情况,归纳等腰三角形的性质:
①∠B=∠C→两个底角相等。
②BD=CD→AD为底边BC上的中线。
③∠BAD=∠CAD→AD为顶角∠BAC的平分线。
∠ADB=∠ADC=90°→AD为底边BC上的高。
指导学生用语言叙述上述性质。
性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。
性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。
教师指导对等腰三角形性质的证明。
1、证明等腰三角形底角的性质。
教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:
(1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。
(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。
2、证明等腰三角形“三线合一”的性质。
【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。
三、典例精析,掌握新知
例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。
四、运用新知,深化理解
第1组练习:
1、如图,在下列等腰三角形中,分别求出它们的底角的度数。
如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的`高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。
2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。
第2组练习:
1、如果△ABC是轴对称图形,则它一定是( )
A、等边三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一个外角是100°,它的顶角的度数是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。
4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。
【教学说明】
等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。
【答案】
第1组练习答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2组练习答案:
1、C
2、C
3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。
4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。
四、师生互动,课堂小结
这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。
学生间可交流体会与收获。
八年级数学教案3
教学目标
理解平行四边形的定义,能根据定义探究平行四边形的性质.
教学思考
1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.
2.能够根据平行四边形的性质进行简单的推理和计算.
解决问题
通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.
情感态度
在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.
重点
平行四边形的性质的探究和平行四边形的性质的应用.
难点
平行四边形的性质的应用.
教学流程安排
活动流程图
活动内容和目的
活动1欣赏图片,了解生活中的特殊四边形
活动2剪三角形纸片,拼凸四边形
活动3理解平行四边形的概念
活动4探究平行四边形边、角的性质
活动5平行四边形性质的应用
活动6评价反思、布置作业
熟悉生活中特殊的四边形,导出课题.
通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.
掌握平行四边形的定义及表示方法.
探究平行四边形的性质.
运用平行四边形的性质.
学生交流,内化知识,课后巩固知识.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
下面的图片中,有你熟悉的哪些图形?
(出示图片)
演示图片,学生欣赏.
教师介绍四边形与我们生活密切联系,学生可再补充列举.
从实例图片中,抽象出的`特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.
问题与情景
师生行为
设计意图
[活动2]
拼一拼
将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.
(1)你拼出了怎样的凸四边形?与同伴交流.
(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.
学生经过实验操作,开展独立思考与合作学习.
教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.
教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容
八年级数学教案4
一、教材的地位和作用
现实生活中,等腰三角形的应用比比皆是、所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础、
性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一、“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等” “两条直线互相垂直”“两个角相等”等结论的重要理论依据、
教学重点:
1、让学生主动经历思考和探索的过程、
2、掌握等腰三角形性质及其应用、
教学难点:等腰三角形性质的理解和探究过程、
二、学情分析
本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备、不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点、
三、目标分析
知识与技能
1、了解等腰三角形的有关概念和掌握等腰三角形的性质
2、了解等边三角形的概念并探索其性质
3、运用等腰三角形的性质解决问题
过程与方法
1、通过观察等腰三角形的对称性,发展学生的形象思维、
2、探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力、在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力、
情感态度价值观:
1、通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性、
2、通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质、
3、通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感、
四、教法分析
根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学、
设计意图
同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形、
等腰三角形的定义
有两条边相等的三角形叫做等腰三角形、
等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角、腰和底边的夹角叫做底角、
提出问题:生活中有哪些现象让你联想到等腰三角形?
首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的
通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性、
剪纸游戏
你能利用手中的这个矩形纸片剪出一个等腰三角形吗?注意安全呦!
学情分析:
大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;
可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;
可能还有同学先画图,再依线条剪得、
在这个过程中,注重落实三维目标、让学生在获取新知的过程中更好的认识自我,建立自信、我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨、
知其然,更重要的是知其所以然、因此,我力求让学生关注剪法的理性思考、
我设计了问题:你是如何想到的?为的`是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”、这样就建立了“操作”与“证明”的中间桥梁、从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫、
提出问题:
等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上、
合作小组活动规则:
1、有主记录员记录小组的结论;
2、定出小组的主发言人(其它同学可作补充);
3、小组探究出的结论是什么?
4、说明你们小组所获得结论的理由、
等腰三角形的性质:
性质一:等腰三角形的两个底角相等(简称“等边对等角”)、
性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”)、
学情分析:这个环节是本节课的重点,也是教学难点、尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论、让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境、
通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法、
(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论、
这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点、
(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导、
巩固知识
1、等腰三角形顶角为70°,它的另外两个内角的度数分别为________;
2、等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;
3、等腰三角形一个角为100°,它的另外两个内角的度数分别为_____、
内化知识
1、如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?
知识迁移
等边三角形有什么特殊的性质?简单地叙述理由、
等边三角形的性质定理:
等边三角形的各角都相等,并且每一个角都等于60°、
拓展延伸
如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?
由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习、将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要、让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平、
畅谈收获
总结活动情况,重在肯定与鼓励、引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力、
帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫、
反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程、
基础性作业:P65习题1、2、3、4
八年级数学教案5
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的`范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 一、教学目标 1.使学生理解并掌握分式的概念,了解有理式的概念; 2.使学生能够求出分式有意义的条件; 3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力; 4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识. 二、重点、难点、疑点及解决办法 1.教学重点和难点 明确分式的分母不为零. 2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解. 三、教学过程 【新课引入】 前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式) 【新课】 1.分式的定义 (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论: 用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母. (2)由学生举几个分式的例子. (3)学生小结分式的概念中应注意的问题. ①分母中含有字母. ②如同分数一样,分式的'分母不能为零. (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论] 2.有理式的分类 请学生类比有理数的分类为有理式分类: 例1 当取何值时,下列分式有意义? (1); 解:由分母得. ∴当时,原分式有意义. (2); 解:由分母得. ∴当时,原分式有意义. (3); 解:∵恒成立, ∴取一切实数时,原分式都有意义. (4). 解:由分母得. ∴当且时,原分式有意义. 思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做? 例2 当取何值时,下列分式的值为零? (1); 解:由分子得. 而当时,分母. ∴当时,原分式值为零. 小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零. (2); 解:由分子得. 而当时,分母,分式无意义. 当时,分母. ∴当时,原分式值为零. (3); 解:由分子得. 而当时,分母. 当时,分母. ∴当或时,原分式值都为零. (4). 解:由分子得. 而当时,,分式无意义. ∴没有使原分式的值为零的的值,即原分式值不可能为零. (四)总结、扩展 1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零? (五)随堂练习 1.填空题: (1)当时,分式的值为零 (2)当时,分式的值为零 (3)当时,分式的值为零 2.教材P55中1、2、3. 八、布置作业 教材P56中A组3、4;B组(1)、(2)、(3). 九、板书设计 课题 例1 1.定义例2 2.有理式分类 教学目标 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题 教学重点:平行四边形的判定方法及应用 教学难点:平行四边形的判定定理与性质定理的灵活应用 一.引 小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗? 二.探 阅读教材P44至P45 利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨: (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗? (2)你怎样验证你搭建的四边形一定是平行四边形? (3)你能说出你的做法及其道理吗? (4)能否将你的探索结论作为平行四边形的.一种判别方法?你能用文字语言表述出来吗? (5)你还能找出其他方法吗? 从探究中得到: 平行四边形判定方法1两组对边分别相等的四边形是平行四边形。 平行四边形判定方法2对角线互相平分的四边形是平行四边形。 证一证 平行四边形判定方法1两组对边分别相等的四边形是平行四边形。 证明:(画出图形) 平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。 菱形 学习目标(学习重点): 1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯; 2.运用菱形的识别方法进行有关推理. 补充例题: 例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由. 例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F. 四边形AFCE是菱形吗?说明理由. 例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点 (1)试说明四边形AECG是平行四边形; (2)若AB=4cm,BC=3cm,求线段EF的长; (3)当矩形两边AB、BC具备怎样的'关系时,四边形AECG是菱形. 课后续助: 一、填空题 1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形 2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点, 且DE∥BA,DF∥ CA (1)要使四边形AFDE是菱形,则要增加条件______________________ (2)要使四边形AFDE是矩形,则要增加条件______________________ 二、解答题 1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。 2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5. (1) AC,BD互相垂直吗?为什么? (2) 四边形ABCD是菱形 吗? 3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。 4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F. ⑴求证:ABF≌ ⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由. 一、学习目标 1.多项式除以单项式的运算法则及其应用。 2.多项式除以单项式的运算算理。 二、重点难点 重点:多项式除以单项式的运算法则及其应用。 难点:探索多项式与单项式相除的运算法则的过程。 三、合作学习 (一)回顾单项式除以单项式法则 (二)学生动手,探究新课 1.计算下列各式: (1)(am+bm)÷m; (2)(a2+ab)÷a; (3)(4x2y+2xy2)÷2xy。 2.提问: ①说说你是怎样计算的; ②还有什么发现吗? (三)总结法则 1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX 2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX 四、精讲精练 例:(1)(12a3—6a2+3a)÷3a; (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y); (3)[(x+y)2—y(2x+y)—8x]÷2x; (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。 随堂练习:教科书练习。 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的'系数饱含它前面的符号; B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行; E、多项式除以单项式法则。 教学目标 ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。 ②理解整式除法的算理,发展有条理的思考及表达能力。 教学重点与难点 重点:整式除法的运算法则及其运用。 难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。 教学准备 卡片及多媒体课件。 教学设计 情境引入 教科书第161页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗? 重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的'模型。 注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。 探究新知 (1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么? (2)你能利用(1)中的方法计算下列各式吗? 8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2 (3)你能根据(2)说说单项式除以单项式的运算法则吗? 注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。 单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。 归纳法则 单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。 应用新知 例2计算: (1)28x4y2÷7x3y; (2)—5a5b3c÷15a4b。 首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。 注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。 巩固新知教科书第162页练习1及练习2。 学生自己尝试完成计算题,同桌交流。 注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。 作业 1、必做题:教科书第164页习题15.3第1题;第2题。 2、选做题:教科书第164页习题15.3第8题 一、课堂导入 回顾平行四边的性质定理及定义 1.什么叫平行四边形?平行四边形有什么性质? 2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? 二、新课讲解 平行四边形的判定: (定义法):两组对边分别平行的四边形的平边形。 几何语言表达定义法: ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形 解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。 活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。 (平行四边形判定定理): (一)两组对边分别相等的四边形是平行四边形。 设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,AB=CD,BC=DA。 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。 板书证明过程。 小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为: 平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形 (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的.端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形? 设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。) 一、学生起点分析 学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论? 反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中 可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。 二、学习任务分析 本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理 并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标: ● 知识与技能目标 1.理解勾股定理逆定理的具体内容及勾股数的概念; 2.能根据所给三角形三边的条件判断三角形是否是直角三角形。 ● 过程与方法目标 1.经历一般规律的探索过程,发展学生的抽象思维能力; 2.经历从实验到验证的过程,发展学生的数学归纳能力。 ● 情感与态度目标 1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣; 2.在探索过程中体验成功的喜悦,树立学习的自信心。 教学重点 理解勾股定理逆定理的具体内容。 三、教法学法 1.教学方法:实验猜想归纳论证 本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验 但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导: (1)从创设问题情景入手,通过知识再现,孕育教学过程; (2)从学生活动出发,通过以旧引新,顺势教学过程; (3)利用探索,研究手段,通过思维深入,领悟教学过程。 2.课前准备 教具:教材、电脑、多媒体课件。 学具:教材、笔记本、课堂练习本、文具。 四、教学过程设计 本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节: 登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。 第一环节:情境引入 内容: 情境:1.直角三角形中,三边长度之间满足什么样的关系? 2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢? 意图: 通过情境的创设引入新课,激发学生探究热情。 效果: 从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。 第二环节:合作探究 内容1:探究 下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题: 1.这三组数都满足 吗? 2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。 意图: 通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。 效果: 经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。 从上面的分组实验很容易得出如下结论: 如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形 内容2:说理 提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗? 意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论: 如果一个三角形的`三边长 ,满足 ,那么这个三角形是直角三角形 满足 的三个正整数,称为勾股数。 注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。 活动3:反思总结 提问: 1.同学们还能找出哪些勾股数呢? 2.今天的结论与前面学习勾股定理有哪些异同呢? 3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢? 4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? 意图:进一步让学生认识该定理与勾股定理之间的关系 第三环节:小试牛刀 内容: 1.下列哪几组数据能作为直角三角形的三边长?请说明理由。 ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22 解答:①② 2.一个三角形的三边长分别是 ,则这个三角形的面积是( ) A 250 B 150 C 200 D 不能确定 解答:B 3.如图1:在 中, 于 , ,则 是( ) A 等腰三角形 B 锐角三角形 C 直角三角形 D 钝角三角形 解答:C 4.将直角三角形的三边扩大相同的倍数后, (图1) 得到的三角形是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能确定 解答:A 意图: 通过练习,加强对勾股定理及勾股定理逆定理认识及应用 效果 每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。 第四环节:登高望远 内容: 1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗? 解答:符合要求 , 又 , 2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行? 解答:由题意画出相应的图形 AB=240海里,BC=70海里,,AC=250海里;在△ABC中 =(250+240)(250-240) =4900= = 即 △ABC是Rt△ 答:船转弯后,是沿正西方向航行的。 意图: 利用勾股定理逆定理解决实际问题,进一步巩固该定理。 效果: 学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。 第五环节:巩固提高 内容: 1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。 解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF 2.如图5,哪些是直角三角形,哪些不是,说说你的理由? 图4 图5 解答:④⑤是直角三角形,①②③⑥不是直角三角形 意图: 第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。 效果: 学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。 第六环节:交流小结 内容: 师生相互交流总结出: 1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数; 2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。 意图: 鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。 效果: 学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。 第七环节:布置作业 课本习题1.4第1,2,4题。 五、教学反思: 1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。 2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。 3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。 4.注重对学习新知理解应用偏困难的学生的进一步关注。 5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。 由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。 附:板书设计 能得到直角三角形吗 情景引入 小试牛刀: 登高望远 一、素质教育目标 (一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联系. 3.会根据简单的.条件画出平行四边形,并说明画图的依据是哪几个定理. (二)能力训练点 1.通过“探索式试明法”开拓学生思路,发展学生思维能力. 2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力. (三)德育渗透点 通过一题多解激发学生的学习兴趣. (四)美育渗透点 通过学习,体会几何证明的方法美. 二、学法引导 构造逆命题,分析探索证明,启发讲解. 三、重点·难点·疑点及解决办法 1.教学重点:平行四边形的判定定理1、2、3的应用. 2.教学难点:综合应用判定定理和性质定理. 3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理 (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理). 教学目标: 1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。 2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。 教学重点: 算术平方根的概念。 教学难点: 根据算术平方根的概念正确求出非负数的算术平方根。 教学过程 一、情境导入 请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的'边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题? 这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。 二、导入新课: 1、提出问题:(书P68页的问题) 你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法) 这个问题相当于在等式扩=25中求出正数x的值。 一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。 也就是,在等式=a(x0)中,规定x = 。 2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。 3、想一想:下列式子表示什么意思?你能求出它们的值吗? 建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。 4、例1求下列各数的算术平方根: (1)100;(2)1;(3);(4)0。0001 三、练习 P69练习1、2 四、探究:(课本第69页) 怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 方法1:课本中的方法,略; 方法2: 可还有其他方法,鼓励学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。 五、小结: 1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根 六、课外作业: P75习题13.1活动第1、2、3题 学习目标 1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。 2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。 3、初步学会运用平方差公式进行计算。 学习重难点重点: 平方差公式的推导及应用。 难点是对公式中a,b的广泛含义的理解及正确运用。 自学过程设计教学过程设计 看一看 认真阅读教材,记住以下知识: 文字叙述平方差公式:_________________ 用字母表示:________________ 做一做: 1、完成下列练习: ①(m+n)(p+q) ②(a+b)(x-y) ③(2x+3y)(a-b) ④(a+2)(a-2) ⑤(3-x)(3+x) ⑥(2m+n)(2m-n) 想一想 你还有哪些地方不是很懂?请写出来。 _______________________________ _______________________________ ________________________________、 1、下列计算对不对?若不对,请在横线上写出正确结果、 (1)(x-3)(x+3)=x2-3( ),__________; (2)(2x-3)(2x+3)=2x2-9( ),_________; (3)(-x-3)(x-3)=x2-9( ),_________; (4)(2xy-1)(2xy+1)=2xy2-1( ),________、 2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2; (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、 3、计算:50×49=_________、 应用探究 1、几何解释平方差公式 展示:边长a的大正方形中有一个边长为b的小正方形。 (1)请计算图的.阴影部分的面积(让学生用正方形的面积公式计算)。 (2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗? 2、用平方差公式计算 (1)103×93 (2)59、8×60、2 拓展提高 1、阅读题: 我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下: 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1) =……=264-1 你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看! 2、仔细观察,探索规律: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 (x-1)(x4+x3+x2+x+1)=x5-1 …… (1)试求25+24+23+22+2+1的值; (2)写出22006+22005+22004+…+2+1的个位数、 堂堂清 一、选择题 1、下列各式中,能用平方差公式计算的是( ) (1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b); (3)(a-2b)(a+2b); (4)(a-2b)(2a+b)、 【八年级数学教案】相关文章: 八年级数学教案11-16 八年级上册人教版数学教案02-27 八年级上册数学教案01-13 关于八年级数学教案01-11 八年级数学教案(15篇)01-31 八年级数学教案15篇01-08 八年级数学教案通用15篇03-20 八年级数学教案(集合15篇)02-23 八年级数学教案(通用15篇)01-31 八年级数学教案(汇编15篇)02-01八年级数学教案6
八年级数学教案7
八年级数学教案8
八年级数学教案9
八年级数学教案10
八年级数学教案11
八年级数学教案12
八年级数学教案13
八年级数学教案14
八年级数学教案15