小学数学教学设计

时间:2023-12-19 11:11:14 教学资源 投诉 投稿
  • 小学数学教学设计《混合运算》 推荐度:
  • 如何做好小学数学计算教学设计 推荐度:
  • 小学数学教学案例设计 推荐度:
  • 小学数学《加法交换律》教学设计 推荐度:
  • 小学一年级的数学教学设计 推荐度:
  • 相关推荐

人教版小学数学经典教学设计

  作为一名教职工,总不可避免地需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那要怎么写好教学设计呢?下面是小编整理的人教版小学数学经典教学设计,欢迎大家分享。

人教版小学数学经典教学设计

人教版小学数学经典教学设计1

  一、教学目标:

  1.通过实际的观察、比较,认识物体的正面、侧面和上面,能正确辨认从正面、侧面和上面观察到的物体的形状,并体验到从不同的位置观察到的物体的形状可能是不一样的。

  2.在活动体验中学会观察方法,积累观察经验,发展数学思考,养成良好的合作、交流的习惯。

  二、制定依据:

  1.内容分析

  教材通过对生活中常见的一些长方体形状物体的观察,引导学生认识物体的正面、侧面和上面,在观察活动中体会:从不同的位置观察到的物体的形状可能是不一样的,最多只能看到长方体的三个面。练习活动中,通过对正方体的观察,体会到正方体的每个面的形状都是正方形,通过对拼搭后的物体的观察,感受视图的形状是随着观察角度而变化的,为下一段的学习作好铺垫。

  2.学生实际

  二年级时,学生已接触过从物体的前、后、左、右等不同位置观察物体,初步掌握了观察物体的基本方法。但三年级学生的抽象思维能力还比较弱,要由只关注物体的一个面发展到同时观察两个面、三个面,还具有一定的难度。在表述自己的观察方法或结果时也会出现叙述不清的状况。

  三、教学过程设计

  时间

  教学环节

  教师活动

  学生活动

  设计意图

  6-7分钟

  一、认识物体的正面、侧面和上面

  1、出示图书箱,引导学生:从你的位置观察,你能看到什么?

  2、让学生在盒子上指认

  3、指名介绍

  活动一:认识物体的正面、侧面和上面

  1、观察图书箱,说说在自己的位置上能看到的,随机认识它的正面、侧面和上面

  2、找找自己带的盒子(长方体形状)的正面、侧面和上面

  3.交流中感悟“正面”的不同含义

  以学生熟悉的图书箱为观察对象,在看、说、指等一系列活动中,调动多种感官,协同认识物体的正面、侧面和上面,并初步感受到因为观察的位置或角度不同,看到的面的'个数也是不同的。

  25

  分钟

  二、在不同的位置观察长方体形状的盒子,体会观察结果的不同

  1、布置观察任务,

  明确观察要求,

  指导观察方法,

  2、教师巡视,注意收集不同的资源

  3、组织交流与评价

  随机引发思考:从一个位置观察,最多能看到长方体的几个面

  4、引导小结

  活动二、从不同位置观察盒子,体会观察结果的不同

  1、学生观察,记录观察结果

  2、交流观察结果,检验观察方法。

  3、感悟小结

  这个大问题的设计是在学生前一次的初步观察体悟的基础上提出的,这样,每个学生都有独立观察,解决问题的时间与空间,而不同层次的学生所展示出来的“差异资源”又为互动生成提供了可能。使学生在活动中学会多角度观察物体的方法,建立初步的空间观念。

  6-7分钟

  三、拓展、延伸

  引导学生观察,鼓励学生不断挑战。

  一、1、从正方体的三个面观察

  2、观察老师拼搭的两个正方体,想象后与视图连一连

  二、按要求摆图形

  通过这一环节,使学生初步体会正方体的每个面的形状都是正方形,通过想象与观察结合,学生初步感受图形与视图的联系,培养学生的空间想象能力,为后续的学习打下一定的基础。

  1―2分钟

  四、全课总结

  学完这节课,你有什么收获?

  学生交流,

  自我评价

  五、课后反思重建:

人教版小学数学经典教学设计2

  一、教学目标

  (一)知识与能力

  1.通过观察钟面,知道钟面上有时针、分针、12个数、12大格、60小格。

  2.掌握读取时间的方法,并能解决简单的实际问题。

  (二)过程与方法

  在观察、操作、体验等活动中,初步建立时、分的概念。

  (三)情感态度与价值观

  1.培养观察能力、探索能力以及积极的学习情感与态度;

  2.感悟时间与生活的密切关系,养成守时和惜时的良好习惯。

  二、教学重难点

  (一)教学重点

  1.认识时间单位:时、分;

  2.理解1时等于60分,掌握“几时几分”这种读取时间的方法。

  (二)教学难点

  正确、迅速读出钟面时间。

  三、教学准备

  多媒体课件、学具钟面、学生自带闹钟

  四、教学过程

  (一)导入

  1.故事引入

  小朋友,听过龟兔赛跑的故事吗?上一次小白兔输得很不服气,于是它约小乌龟到绿树成阴的圆形运动场来比赛,看谁先跑完一圈,还请小红当裁判。它们站到同一起跑线上,小红一说开始,它们跑起来。

  2.提出问题。

  (1)它们所跑的路程一样长吗?

  (2)他们所用的时间相同吗?

  3.引出“钟表”

  在钟面上,时针和分针也一直在进行这样的赛跑。钟表有什么用呢?它能帮助我们认识时间,每天我们都离不开时间。今天我们一起学习关于钟表的知识。

  (二)认识钟面

  1.启发提问:请同学们仔细观察屏幕上的钟面或手中的学具钟面,说一说你看到钟面上有些什么?

  2.得出结论:12个数字把钟面分成了12个大格,每个大格又分为5小格,一共是60小格。钟面上又短又粗的针叫时针,又细又长的针叫分针。

  (三)认识时

  1.媒体演示:闪动时针,并且时针从数字12走到数字1。时针走1大格经过的时间是1时。2.启发提问:时针从1走到2时1小时。从4走到几是1小时?你还能说一说,时针从几走到几也是1小时?

  3.得出结论:时针从一个数字走到下一个数字经过的时间是1时。

  (四)认识分

  1.媒体演示:闪动分针,并且分针从12起走动1小格。分针走1小格经过的时间是1分。

  2.启发提问:分针从12走到1经过了几分,你是怎样想的?

  3.得出结论:12到1有5个小格,分针走1小格的时间是1分,走5小格的时间就是5分。

  (五)感受一分钟

  1.活动:通过读、写、算、数等活动,亲身体验一分钟的时间观念。

  电脑计时,学生分组操作,第一组:读课文;第二组:写字;第三组:口算;第四组:数数。一分钟结束后,提问:

  (1)一分钟读多少字?(统一读一篇课文)

  (2)一分钟写多少字?(统一抄写字)

  (3)一分钟做多少口算?(预先印好题)

  (4)一分钟数多少个数?

  每组推荐二人汇报。

  2.教师总结:一分钟的时间里,中央电视台播音员能播180个字,银行点钞机能点1500张人民币。一分钟虽然很短,但充分利用却能做很多事。因此,我们要珍惜生命中的每一分钟。

  (六)认识时、分关系

  1.导入:刚才的时间大家说的都很好,下面我们再来看看时和分之间有怎样的关系。

  2.分组活动:学生拿出准备的小闹钟,拨一拨,看一看分针走一圈,时针走几大格,并在小组中互相交流自己的操作结果。

  3.教师演示:(在演示前强调学生看时针原来的位置并记住,再开始演示分针走一圈的过程)提问:时针走了多少?

  结论:时针走了一大格,即1时。

  提问:谁知道分针走一圈的时间是多少分?

  结论:60分

  提问:通过刚才操作,我们知道分针走1圈时针正好走1大格。说明1时和60分什么关系?

  结论:1时=60分

  (七)读写时间

  1.启发提问:(出示学具钟面)有时时针不是正好指着几时,应该如何表示时间?

  2.师生共同总结读写时间的方法:

  要读出一个时间,要根据时针和分针的位置来共同确定。先看时针刚走过数几就是几时多,再看分针从12起走了几个小格,就是几分,这时钟面上的时刻就是几时几分。

  两种表示方法,一种是中文表示方法,是几时几分,就写几时几分;第二种是像电子表那样,就两个小圆点把左边的时和右边的.分隔开。有几时就写几再打两个小圆点写右边的分。需要注意的是表示分的数字要占两个位置,不满10分的要用0来占位。比如,9时5分,不满10分,我们就先写0再写5。

  (八)课堂小结

  时间过得真快,马上要下课了,你知道这节数学课多长时间吗?这节课你学习了哪些知识?老师有一句话要送给大家:珍惜每一分钟,让生命更有价值。

  时间悄然流逝,守时和惜时是一个人可贵的品质。本节课的教学,不仅要让学生知道时间的读写方法,更要注重建立学生的时间观念,培养其珍惜时间的意识。

人教版小学数学经典教学设计3

  《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。

  根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:

  1、了解方程的意义,弄清方程与等式的联系与区别。

  2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

  3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

  教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

  下面我就将本节课的教学过程及设计意图向大家做以汇报。

  一、谈话导入:

  同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

  对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

  其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

  【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】

  二、认识并使用天平

  教师介绍天平:

  这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

  教师示范:

  下面我们就一起来进行实际应用天平来测量一下。

  首先我们来应用一下,检查一下砝码的质量是否准确。

  在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

  看到天平,你会用等式表示天平两边物体的质量关系吗?

  20+30=50

  这有一个空的水杯,我们先来测量一下它的重量。

  请你估计一下它的重量。我们来试一试。

  通过测量,我们得知,水杯的重量是100克。

  现在我们缓缓向水杯里倒水,你发现天平怎么样了?

  你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

  100+X>100

  我们继续测量水的质量,同理得出:

  100+X>200

  100+X<300

  100+X=250

  这几个算式都以板书形式呈现。

  【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】

  三、认识方程

  1、根据天平写算式并分类

  刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

  【《20xx年版数学课程标准》中将学生的.“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

  在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

  2、交流汇报:

  学生边说,教师边板书:

  等式 不等式

  含有未知数 3x=180 50+2x>180

  100+x=50x3 80<2x

  不含未知数 50x2=100 100+20<100+30

  根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

  反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

  【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】

  四、应用概念

  同学们,根据你对方程的理解,你能自己写出几个方程吗?

  判断,他们写得都对吗?

  黑板上刚才我们写得这些算式,有方程吗?

  【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】

  五、方程产生的文化背景

  早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

  【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

  六、拓展延伸

  在拓展延伸中,我设计了这样几个题目:

  1、 根据线段图写方程

  2、 根据数量关系写方程

  3、 判断是否是方程

  4、 方程与等式的关系

  七、作业:

  利用课余小组时间用天平测量物体的重量。

  再想,天平两边可以如何添加,能使天平继续保持平衡呢?

  【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】

人教版小学数学经典教学设计4

  教学内容:

  教学目标:

  1、学生能在具体的生活实践或游戏情境中,体验前与后的位置与顺序。

  2、能准确地确定物体前后的位置与顺序。

  3、培养学生关于前后的空间观念。

  4、培养学生的爱国主义精神。

  教学重点:

  前与后的位置与顺序

  教学难点:

  学生前后空间观念的培养。

  教学方法:

  尝试教学、情境教学、游戏

  教学准备:

  纸制的方向盘4个、车站牌5个、教学过程:

  教学过程:

  一、创设情境,激发兴趣

  1、老师请5名学生上讲台排成队列

  2、在老师的口令下,学生按要求调换位置(把原来排在第二位的同学,依次往后进行调换,换三次,最后一次换到了队伍的末尾。使学生初步体验到:前后的位置与顺序,具有一定的相对性。

  引导学生“()同学在()同学前面,在()同学后面,”“()在最前面”等较规范的语言来描述。

  二、观察讨论、学习新知

  1、(有了前面的情境设计做铺垫,学生已初步体验到了前后的位置与顺序,因此新课知识,应由学生自己通过观察、讨论来掌握。)

  2、老师出示电脑:小动物赛跑

  电脑演示:小鹿、小狐狸、小白兔,小蜗牛参加赛跑,起跑后不久,他们的位置发生了改变。

  (学生看电脑观察小动物的位置变化)

  (暂停演示)问:你看到了什么?现在跑在最前面,它后面有哪些小动物?谁第二?小白兔跑第几?小蜗牛跑第几?

  问:如果比赛继续进行,可能会有什么情况发生?(目的.:启发学生的法语异思维,充分发挥学生学习的自主能动性,培养学生的观察和语言表达能力。再次体验到前后顺序具有相对性)

  三、练习巩固、启发思维

  1、说一说

  (1)你的座位前面是谁?后面是谁?

  (2)你前面有几个同学?后面有几个同学?你是排在第几位?

  2、做一做的第二题,然后全班集体订正。

  3、游戏:

人教版小学数学经典教学设计5

  教学内容:

  义务新课程标准实验教科书数学第五册第70~71页。

  教学目标:

  1.学生掌握乘法估算的方法,会进行乘法估算。

  2.在解决现实问题的过程中,培养学生估算的意识和习惯;培养学生归纳概括、迁移类推以及应用所学知识灵活解决实际问题的能力。

  3.在估算的过程中,探索解决问题的策略,并能运用数学语言进行表述和交流;感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感。

  教学过程:

一、猜数引入

  老师想了一个数,它是个两位数,你们猜它是几?(随着学生的猜测,教师用“大了”和“小了”提示)

  回忆刚才我们猜数的时候,是不是一下子就猜出来了呢?像刚才这种在老师提示下进行有根据的猜测,叫估计。其实,在我们的生活和学习中有很多地方要用到估计。

  [说明:课前的猜数游戏,学生兴趣盎然,为新课的引入做好了铺垫。]

  二、感受估计的需要

  1.今天的课堂上,除了老师和你们外,还来了你们的一些老朋友呢!(课件呈现8只机器猫)来了多少只机器猫?(当数量少的时候,我们一眼就可以看出来了)

  快数一数,这里有多少?(课件呈现满屏幕的机器猫,造成学生数不清的困难)

  2.这么多,一下子数不清,我们可以估一估呀!(学生第一次估的差距比较大,有1000、100、500、200等)

  师:怎样估计能精确些?

  生1:圈出一份估一估,然后再看有这样的几份。

  生2:给这些机器猫排排队。

  ……

  3.课件给机器猫排队,排成8行。(按先估每行大约有几只,然后乘8的方法估一估)

  4.师:机器猫每行有29只,排成8行,大约有多少只?该怎么列式?

  [说明:创设数机器猫只数的情境,分成以下几个层次进行教学:1.直接呈现数量较少的机器猫,学生一眼就可以观察得出;2.呈现很多机器猫,造成数不清的困难,引导学生感受估计的需要;3.由于眼花缭乱,第一次估计不精确;4.通过交流估计的方法,达到比较精确的估算。这样四个层次的`教学,让学生主动感受和体验到了估算的必要性与作用。]

  三、交流估算的方法

  1.29×8大约等于多少?把你的想法,在练习本上表示出来。

  2.交流展示学生的估算方法。

  A.29×8≈240,把29看成30。

  (师介绍约等号的含义、写法和读法,并与等号进行比较)

  B.29×8≈160,把29看成20。

  C.29×8≈290,把8看成10。

  D.29×8≈300,把29看成30,把8看成10。

  ……

  [说明:给学生创设一个良好的心理环境,让他们的思考和情感得到完全的放松与充分的尊重,这样他们的想法和意见才得以尽情地流露与表述,不同的看法和结论才可以在一步步的表达中得到完善。学生在此出现了几种不同的方法,虽然有的方法还不恰当,但每个学生的思维和情感得到了发展,并在与他人方法的比较中感受到了不同估算方法的优越性和局限性。]

  3.这几种方法有什么相同的地方吗?

  4.同样是把因数看成整十数,但估出来的结果差距很大,这是什么原因啊?

  5.通过交流明确:应该把因数看成和它最接近的整十数再估算。(去掉29×8≈160)

  6.剩下的三个结果,哪个与准确值最接近?(课件演示每种估算方法)

  (A是多估了1个8,C是多估了2个29,D是多估了2个29和1个8;这里不需要向学生直接说明,只要让学生感受即可)

  小结:这几种方法都可以,同学们可以根据需要选择最合适的方法进行估算。

  7.全班42人,如果送给每人5只机器猫,估一估,这些机器猫够送吗?42×5≈200(只)

  和前面一题进行比较:29×8≈240(估大),42×5≈200(估小)。

  8.试一试。

  21×6≈ 48×5≈ 397×3≈ 510×7≈

  9.小结:我们在估算的时候,都是把这些乘法算式中的某个数看成整十、整百、整千的数,那是不是可以看成任意的整十、整百、整千的数呢?(要看成接近的整十、整百、整千的数)

  四、拓展提升

  其实,在我们的生活中,有很多地方都和估算有很大的联系。陆老师今年暑假的北京之游就碰到了很多和估算有关的知识,让我们以数学的眼光去看看吧!

  第一站:长城

  长城离陆老师所住的宾馆有点远,汽车每小时行驶53千米,3小时才到达,长城离宾馆大约有()千米。

  第二站:美丽的北海公园

  告示:每条大游船限乘120人。

  正好有4个旅游团,每个团有31人,估算一下,他们能同时上一条船吗?

  [说明:此题引发了学生的争论:约等于120,却为什么不能上船?出现认知上的矛盾,学生通过争论后,明白把31看成30是估小了,所以结果也比准确值小了。在这个过程中,学生懂得了估算和精确计算之间是有误差的,在运用估算结果来解决实际问题时,还必须考虑现实情况。]

  比较:31×4○120(让学生明白估算的另一个用途)

  第三站:天坛公园

  每张门票8元,陆老师所在的旅游团共有39人,320元钱够买门票吗?

  为什么同样是估算,刚才不能上船,而现在买门票却又够了呢?

  学生通过辨析比较发现,刚才是估小了,而现在是估大了,所以够了。

  比较:39×8○320

  第四站:购买北京特产

  每种特产,老师准备都买8份,请你们帮助我算一算,大约要花多少元钱?

  反馈:1.(58+11+33)×82.58×8+11×8+33×8

  ≈(60+10+30)×8 ≈60×8+10×8+30×8

  =800(元) =800(元)

  比较两种方法,哪种简单?想一想,老师大约带多少钱就够了?(让学生明白估算还可以为我们的生活提供帮助)

  说明:

  《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。而学生估算习惯的培养与能力的提高,很大程度上取决于教师的估算意识。在平时的教学中,我充分挖掘估算题材,重视进行估算示范,使学生认识到估算的必要性和优越性,并关注估算在培养学生逻辑思辨、辩证看待问题能力上的作用。

  1.大胆改变教材内容,使学生产生估算的需要,体验估算的现实性。

  乘法的估算,学生以前并没有接触过。在这节课上,我根据学生的实际情况,把教材的内容做了一些调整,将学生已有的经验和所学习的新内容自然地融合到一起,并通过现实问题,让学生明白估算的必要性。与此同时,课中所设计的一系列练习,都是学生在实际生活中会碰到的现实问题,并具备用估算解决的现实需要,因而整节课都能让学生感受到浓厚的生活味。

  2.深入挖掘教材内涵,让学生体验数学课堂的思辨性。

  成功的数学课,既能将复杂的问题简单化,也能将简单的问题深化。“乘法估算”一课,教师们都会想到要让学生体验估算的“必要性”,设计的学习素材要富含现实气息,但仅仅停留在这个层面上是不够的。如果深入研究教材我们就可以发现,在现实运用估算的过程中,分为两种情形:一是根据估的结果就可以解决相关问题;二是因为估的结果有时估大有时估小,单凭估出来的数据并不能直接准确地回答所要解决的问题,即还需结合现实情况进行考量。我在教学中充分考虑了这些情况,精心设计情境,让学生在情境中体验到“估大”、“估小”的情况及如何运用这样的结果解决问题,同时穿插比大小的训练,从而将现实性、思辨性较好地统一起来。

人教版小学数学经典教学设计6

  课题名称

  设计者(姓名、通讯地址)

  一、概述

  ·说明学科(数学、语言艺术等)和年级(中学、小学、学前等)

  ·简要描述课题来源和所需课时

  ·概述学习内容

  ·概述这节课的价值以及学习内容的重要性

  二、教学目标分析

  从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述。(修改后的课标要求从四个方面进行分析)

  三、学习者特征分析

  说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。要注意结合特定的情境,切忌空泛。

  说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等。

  四、教学策略选择与设计

  说明本课题设计的基本理念、主要采用的教学与活动策略,以及这些策略实施过程中的关键问题。

  五、教学资源与工具设计

  教学资源与工具包括两个方面:一是为支持教师教的资源;二是支持学生学习的资源和工具,包括学习的环境、多媒体教学资源、特定的参考资料、参考网址、认知工具以及其他需要特别说明的'传统媒体。

  如果是其他专题性学习、研究性学习方面的课程,可能还需要描述需要的人力支持及可获得情况。

  六、教学过程

  这一部分是该教学设计方案的关键所在。

  在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语。

  最后,画出教学过程流程图。同时,流程图中需要清楚标注每一个阶段的教学目标、媒体和相应的评价方式。

  教学内容与教师的活动媒体学生教师进行逻辑选择的运用的活动

  七、教学评价设计

  创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另外,可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。

  八、帮助和总结

  说明教师以何种方式向学生提供帮助和指导,可以针对不同的学习阶段设计相应的不同帮助和指导,针对不同的学生提出不同水平的要求,给予不同的帮助。

  在学习结束后,对学生的学习做出简要总结。可以布置一些思考或练习题以强化学习效果,也可以提出一些问题或补充的链接鼓励学生超越这门课,把思路拓展到其他领域。

人教版小学数学经典教学设计7

  [教学目标]

  1.知识与技能:结合具体情境,通过观察、度量、操作、探索、交流等多种形式的活动,获得对空间与图形知识的直观经验。

  2.过程与方法:能测量并计算三角形、长方形、平行四边形等图形的周长。

  3.情感态度与价值观:运用已学知识,计算各种图形的周长。能主动发现生活中的数学。

  [教学重点]

  能测量并计算三角形、长方形、平行四边形等图形的周长。

  [教学难点]

  用不同的方法计算图形的周长

  [教学过程]

一、创设情境,导入新课

  同学们,你们知道我市有哪些公园吗?有一个小朋友也去了一趟小公园,在这个小公园里,它发现了很多数学问题。老师今天也带你们去一趟这个公园,看看你们能发现哪些数学问题?

  二、合作交流,解读探究

  1、出示小公园的挂图。这就是那个小公园,同学们,你们能提出什么数学问题吗?

  2、在同学提出的许多问题中,今天我们就一起来重点研究其中的一个与我们这段时间学习的数学知识――周长有关的问题。

  3、你能指出这个小公园的.周长吗?如果让你来计算这个公园的周长,你需要知道哪些信息?你有办法获得这些信息吗?

  4、现在老师告诉你们这些信息,你能求出这个小公园的周长吗?试试看。

  5、让学生展示不同解法。

  三、应用迁移,巩固提高

  1、你们能用一句话总结一下求小公园的周长的方法吗?

  2、计算下面图形的周长。

  四、总结反思,拓展升华

  1、在这个小公园的附近,小动物们还拿着一些很有趣的事物和图形,你们认识它吗?

  我们班有六个组,老师这里一共有六个图形,每个组可以拿几个?但老师想请每个小组算两个图形的周长,你们能帮老师想想办法吗?

  2、今天我们一起去游玩了一个小公园,你有什么收获吗?

  五、作业:

  作业本上的作业

人教版小学数学经典教学设计8

  活动目的:

  1.通过挖掘身边的数学素材,培养学生主动提出问题、分析探究问题的能力,巩固已学知识。

  2.丰富学生的数学活动经验,引导学生和同伴交流数学思考的结果,获得积极的情感体验。

  3.使学生感受数学与生活的联系,进一步产生对数学的探究兴趣。

  4.在活动中培养学生热爱家乡的情感。

  教学重、难点:

  1.探究旅游四个景点至少要用多少油及所需油钱。

  2.选择合理的旅游线路。

  活动过程:

 一、简要导入

  1.今天见到佤山小朋友,心里很高兴!老师从电视里了解到秘境佤山不仅有神奇的文化,而且有优美动听的民歌,还知道佤山有很多富有传奇色彩的旅游景点。下面,请同学们介绍你知道的景点。(学生介绍)

  2.同学们介绍的'景点令人心驰神往,老师现在最想到四个具有特色的景点去看一看、游一游。(屏幕出示)请同学们大声地把这四个景点的名字喊出来。(翁丁原始部落、南滚河自然保护区、崖画、司岗里溶洞)。

  3.请同学们用所学的知识,帮助老师解决旅游途中遇到的问题。

  二、根据信息探究问题

  1.(屏幕出示)根据图中提供的信息(旅游车平均每小时行40千米),如果先到翁丁原始部落,你能提出什么数学问题?怎样列式?(学生提问题,口头列式)

  2.如果再给大家提供一个信息“从翁丁原始部落到南滚河自然保护区有12千米”,你又能提出哪些问题?怎样计算?

  估计学生会提出下列问题:①从县城到南滚河自然保护区共有多少千米?36+12=48(千米)。②从翁丁原始部落到南滚河自然保护区需几小时?12÷40=0.3(小时)。③从县城到南滚河自然保护区共用几小时?0.3+0.9=1.2(小时)或(12+36)÷40=1.2(小时),引导学生比较两种算法各有哪些优点。

  3.同学们这么快就解决了在第一条旅游线路中遇到的问题,很好!接下来,老师还要到崖画和司岗里溶洞去游一游。请看大屏幕,根据提供的信息,你又能提出哪些问题?(学生提出问题,并列式解答)

  估计学生会提出以下问题:①从县城到崖画有多少千米?0.6×40=24(千米)。②从崖画到司岗里溶洞有多少千米?0.4×40=16(千米)。③从县城到司岗里溶洞共有多少千米?24+16=40(千米)。④从县城出发到司岗里溶洞共需几小时?0.6+0.4=1(小时)或(24+16)÷40=1(小时),并让学生分别说一说这样算的理由。

  小结并板书:路程=速度×时间

  三、进一步探究“油耗”和“油钱”问题

  1.在同学们的帮助下,老师知道了从县城到每个景点的路程和时间。下面,老师再给大家提供两个信息,看看从信息中你们了解到了什么,可以提出哪些问题。

  信息:①旅游车每千米用油0.15升;②每升油价5.60元。

  2.学生思考后提出问题,教师再选择其中最具有代表性的问题分小组讨论、探究。

  问题(1):从县城到南滚河自然保护区需多少升油?0.15×48=7.2(升)。

  问题(2):从县城到司岗里溶洞需要多少油钱?

  ①24×0.15×5.60+16×0.15×5.60=33.60(元);②(24+16)×0.15×5.6=33.60(元);③40×0.15×5.60=33.60

  (元)。最后比较这三种解法,说说每种解法的理由。

  问题(3):从县城到南滚河自然保护区,往返需多少升油?48×0. 15×2=14.4(升),并说说“往返”是什么意思。

  问题(4):从县城到司岗里溶洞,加70元的油能返回到县城吗?33.60×2=67.20(元),并说说为什么要“×2”。

  3.引导学生归纳并板书:油的总钱数=每升油价×每千米用油量×千米数。

  4.让学生先说说“每升油价×每千米用油量”和“每千米用油量×千米数”所表示的意义,再说说每个算式所表示的意义。

  四、给这次旅游提合理化建议

  1.同学们帮助老师解决了旅游中遇到的这么多问题,真了不起!现在请同学们看旅游线路图,给老师的这次旅游提一些合理化建议,并说明你的理由。

  2.学生提建议,教师对能省时、省钱、省油等经济实惠方面的建议予以肯定,倡导绿色旅游。

  五、全课小结

  同学们懂得的旅游知识还真不少,谢谢同学们给老师提了这么多的建议,这次秘境佤山游将成为我美好的回忆。(板书课题:秘境佤山游)

  附板书设计:

  秘境佤山游

  路程=速度×时间

  油的总钱数=每升油价×每千米用油量×千米数

人教版小学数学经典教学设计9

  教学内容:

  人教版四年级下册90页例1、例2。

  教学目标:

  1.使学生理解平均数的含义,知道平均数的求法。

  2.了解平均数在统计学上的意义。

  3.学习解决生活中有关平均数的问题,增强应用数学知识解决问题的能力。

  教学重点:理解平均数的意义,掌握求平均数的方法。

  教学难点:理解平均数的意义。

  课前谈话:

  师:孩子们,我姓王,大家可以叫我----王老师,真有礼貌!你们愿意和老师交个朋友吗?(愿意)你叫什么名字?你现在有多高?(学生个别汇报)

  师:看来,同学们的身高有高有矮,谁能说说我们班同学大概有多高?是这么高吗?还是这么高?

  (学生疑惑时,老师故意找出班上较矮和较高的学生,欲以他们的身高作标准,由此展开争议)

  师:那你们认为我们班同学的身高大概与哪位同学差不多?猜测一下这位×同学身高大约是多少?这是我们班每个同学的身高吗?(不是)那是什么呢?

  师:孩子们,现在对平均身高有感觉了吗?带着这种感觉一起进入今天的学习。

  【设计意图:通过感受平均身高,了解平均身高的意义,让生在脑海中对“平均数”有一个表象。】

  一、情境导入,讲解例1

  1.联系生活,情景激趣

  为争创全国卫生城市,我校四年级同学自发组成环保小组,利用周末去收集饮料瓶。请看,这是其中一组收集的瓶子数量,老师把它绘制成了象形统计图。

  教师用多媒体课件出示例1主题图,引导学生仔细观察。

  2.发现信息,提出问题

  教师:从图中你知道了什么?

  学生汇报,教师引导。

  教师:根据这些信息,你能提出什么数学问题?

  学生:这个小组平均每人收集了多少个矿泉水瓶

  二、自主探索,解决问题

  1.教学例1,初步理解平均数的意义和求平均数的方法

  (1)小组合作,尝试解决问题。

  学生在独立思考的基础上,进行小组合作,预设学生会想到“移多补少”和“数据的总和÷份数”的方法。学生可以在教师提供的练习纸上画一画、移一移,直观地看出平均数,也可以动笔计算求出平均数。

  (2)汇报交流,理解求平均数的两种方法。

  教师:这个小组平均每人收集多少个?

  学生:13个。

  教师:大家都同意这个答案吗?13是怎么来的?

  ①“移多补少”的方法。

  结合学生口述,用课件演示“移多补少”的过程。

  教师:这种方法对吗?你能给这种方法起个名字吗?你们是怎样想到这个方法的?

  教师:同学们想到了用多的补给少的这个方法,使每个人的瓶子数量同样多,这种方法可以叫“移多补少”法。(板书:移多补少)这里平均每人收集了13个,这个“13”是他们真实收集到的矿泉水瓶吗?

  引导学生初步体会13不是每个人真正收集到的瓶数,而是4个人的整体水平。

  ②先合并再平均分的计算方法。

  教师:还有不一样的方法吗?

  结合学生口述,用多媒体课件演示“先合并再平均分”的过程。

  教师:怎样列式计算呢?

  学生:(14+12+11+15)÷4=13(个)

  教师:谁看懂这个方法了?能再说一说这个算式的每一部分是什么意思吗?

  教师:像这样先把每个人收集的瓶子数量合起来,再除以4,也能算出这个小队平均每人收集了13个。

  教师:谁再来说一说这种方法。

  (4)引入概念,揭示“平均数”这一课题。

  教师:13就是这4个数的平均数。这也是我们今天要研究的内容。(板书课题:平均数)

  师:那么,13是这四个同学实际收集的瓶子数量吗?

  师:看来,平均数并不是真实存在的,它是一个虚拟的数。

  师:那平均数13和他们实际收集到的数量相比较,你又发现了什么?仔细观察这组数据:实际收集的数量最大的是( ),最小的是( )它们与平均数13相比,你又发现了什么?

  引导学生说出:平均数在最大值和最小值之间

  师:如果小亮只收集了7个,平均数会发生变化吗?变多还是变少?

  如果小亮收集了19个呢?

  小结:这样看来,平均数很敏感,平均数与每一个数据都有关,其中任何一个数据的变动都会引起平均数的变动

  【设计意图:通过观察,比较,进一步理解平均数的意义,在这一环节中,教师注重让学生自主探索、合作交流,尝试用不同的方法求平均数,充分经历知识的形成过程。无论是直观形象的操作演示,还是运用平均分来计算,都为学生理解平均数这一概念提供了感性支撑,使学生初步理解了平均数的意义,掌握了求平均数的基本方法。】

  2.教学例2,体会平均数的作用

  (1)承上启下,调动学生参与热情。

  在今天上课之前,你们在生活用平均数的机会多吗?实话实说,不多。那我们今天来用一用好嘛。请看大屏幕:今天老师想邀请你们来当回裁判,那么裁判需要什么样的素质?(公平公正)

  四(2)班的男女同学比赛踢毽子,男生队派出4人,女生派出4人,如果你是裁判,你认为哪个队赢了?哪个队的成绩好呢?仔细看数据。

  引导学生体会,在人数相同的情况下,我们可以用求总数的方法比较输赢。

  教师:还有其他的方法吗?

  学生:也可以比较两组队员踢毽个数的平均数。

  教师:哪个队求平均数比较简单,你是用什么方法求的?

  引导学生用平均数的意义来说明道理,求几个数据的平均数,就相当于把这些数据的总和平均分成这么多份,每份都同样多,平均数可以代表这组数据的总体水平。

  (4)巧设矛盾,比较人数不同的两个队成绩。

  教师:看来,女生队暂时领先。如果男生队再加一个人,谁会是最后的赢家呢?请各位裁判员独立思考后给出最终的裁定?并说出你是怎么想的?

  预设学生会进行争论,有的认为看总数,第一组应该领先,有的认为在人数不同的时候,用总量来比不公平,只能用平均数来比较。

  教师:为什么不公平?谁再来说一说?

  引导学生通过对不公平的深入思考,体会平均数是解决这个问题的好办法。

  引导学生拿着学习单,说计算的方法。

  师:在人数不等的情况下,是谁帮我们解决了这个问题?是的,求平均数。通过统计图更能清晰地说明你们的观点。看(停顿)通过移多补少,一眼就能发现哪队的整体水平高呀?(女生)所以,平均数能反应一组数据的整体水平。

  【设计意图:通过自主探究-全班交流-互相质疑-争辩,使学生深刻的'理解平均数的意义】

  三、联系实际,拓展应用

  1.练习一:三个铅笔筒,装了铅笔,分别6支、7支、5支,平均每个笔筒装了多少支?

  师:看看每个笔筒里有多少枝?

  提问:用了什么方法?

  移多补少

  呈现条形统计图,让学生说说怎么移多补少?

  指出:移多补少。

  2.练习二:小丽有这样的三条丝带,这三条丝带的平均长度是多少?

  平均数是18cm

  追问:用什么方法?

  指出:测量后获得数据,用求和平分法。

  在获得数据的基础上,移多不少。

  3.练习三:冬冬来到一个池塘边,看到平均水深110cm,冬冬心想我身高是140cm,下水游泳不会有危险,对吗?

  引导学生运用平均数的知识来解答:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,超过他的身高。所以,冬冬下水游泳可能会有危险。

  师:平均数反应的是整体水平,它会掩盖掉很多的信息,万一这条小河是这样的话,你觉得东东有危险吗?

  师:所以呀,孩子们,天气越来越热,孩子们一定不能随便下水游泳,要有防溺水的安全意识,时刻注意安全。

  4.练习四:中国男性平均寿命74岁,女性平均寿命77岁。

  问题一:一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢?

  引导学生运用平均数的知识来解答:平均寿命74岁反映的只是中国男性寿命的整体水平,这些人中,一定会有人超过平均寿命的。

  问题2:如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?

  引导学生运用平均数的知识来解答:不一定!虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

  师:要想长寿,就要注意健康。健康让我们更有幸福感和安全感,要想有健康的身体,就要养成体育锻炼好习惯和良好的生活方式。

  二、总结

  这节课你收获了哪些知识?又学到了哪些方法?

  我们认识了一个新的统计量平均数,什么是平均数呀?平均数就是将原来几个不相同的数变得同样多的数,这个同样多的数就是平均数。通过两种方法研究平均数,分别是求和平分、移多补少方法。我们在探究的过程理解平均数的特性:平均数反映了一组数据的整体水平,一个数据的波动会影响到平均数,平均数在最大值和最小值之间。数学源于生活,我们还认识到平均数在生活中的运用。

  师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

人教版小学数学经典教学设计10

  一、导入新课。

  1.谈话:今天老师请大家带来了一些生活中常见的容器,谁来说说你所带容器的容量是多少?

  (指名交流)

  2.谈话:像这些计量比较少的液体,常用毫升做单位,毫升可以用符号“ml”表示。(板书)

  二、学习新课。

  1.谈话:饮料瓶的容量是500毫升,钙奶瓶的容量是100毫升。那么1毫升是多少呢?

  (让学生来简单描述,或上来倒出认为是1毫升的水。)

  2.认识1毫升。

  出示:25毫升量筒。

  谈话:这是一个25毫升的量筒,里面盛的'水是1毫升。

  (出示实物,让学生观察,感受1毫升有多少。)

  我们再用这个滴管来滴1毫升的水,数数有这样的几滴。

  3.教师演示实验,学生观察、数数。

  4.谈话:你觉得1毫升的水怎么样?

  (让学生体会1毫升是很小的计量单位)

  5.谈话:通过前面的学习我们已经知道升和毫升都是容量的计量单位,那么它们之间有什么关系呢?

  (学生可进行猜测,可能有学生已经知道其中进率。)

  6.出示:图片

  谈话:你能看着刻度说出每个容器里有多少毫升水吗?(指名交流)

  7.出示1升水,与500毫升的水比较,估计1升水有多少毫升?

  (1)学生估计交流。

  (2)实验证明。

  板书:1升=1000毫升。

  8.练习,“想想做做”第4题。

  4升=()毫升20xx毫升=()升

  9升=()毫升5000毫升=()升

  (1)学生独立完成。

  (2)指名交流,并说说自己是怎么想的。

  全班校对,及时纠正错误。

  三、巩固应用,完成“想想做做”。

  1.第1题。

  (1)学生审题后估计各容器里有多少毫升。

  (2)出示数值,全班读一读。

  2.第3题。

  (1)学生审题,指名说出每种饮料的容量。

  (2)学生独立思考。

  (3)指名交流,并说说自己是怎么想的。

  4.阅读“你知道吗?”

  四、课堂小结。

  1.谈话:今天我们学习了什么内容?你有什么收获?

  2.布置作业:补充习题第9页。

  3.课外作业:到超市看看,哪些物品是用升作单位的,各是多少升?哪些是用毫升作单位的,各是多少毫升?

  4.有时间介绍一下节课量器的做法,并允许学生在家里试做。

人教版小学数学经典教学设计11

  教学内容:

  人教版义务教育课程标准实验教科书四年级上册P112—114页。

  教学目标:

  知识目标

  1.知道可以根据事件的具体情况,对事情的顺序进行合理安排,以达到提高效率的目的。

  技能目标

  1.学会根据具体事件的情况,通过调整事件顺序,合理安排时间。2.会画简单的事件流程图。

  情感目标

  1.培养学生孝敬长辈的思想感情。

  2.锻炼孩子思维的条理性,培养整体考虑决定事件顺序的习惯,和综合思考的能力。

  教学重点:

  从解决问题的多种方案中寻找出最优方案。

  教学难点:

  学会根据具体事件的情况,通过调整事件顺序,合理安排时间。

  教具准备:

  多媒体课件

  教学过程:

  1、创设情境:(课件出示情境)

  星期六,李阿姨到小明家做客,他们之间发生了很多有趣的事,你们想不想去小明家看看?

  2、探究新知,掌握规律:

  (1)沏茶问题

  (课件)见了李阿姨,小明怎样说?小明很有礼貌的请李阿姨坐下,还要给李阿姨沏上一杯热茶。沏茶的步骤有是这样的。

  (课件出示主题图)(学生读时间表)

  师:如果你是小明,怎样安排这些事,使李阿姨能尽快喝上热茶?一共要用多少时间?

  学生讨论

  师:谁来说一说怎样安排?为什么这样安排?

  学生用卡片在黑板上展示时间安排

  板书:1+1+8+1=11(分)

  指出,这就是流程图,下面要再写出时间的计算。

  (2)总结方法:有时我们解决问题的方法有多种,我们可以选择最优的方法来做,这就是优化。通过刚才解决的问题,你说说怎样才能节省时间?做一件事情的同时再做其它事情可以节省时间。

  联系生活举例。听广播与刷牙、洗脸、吃饭、读英语。

  (3)烙饼问题

  不知不觉到了中午,妈妈准备作他最拿手的烙饼招待李阿姨。我们来看看妈妈是怎样烙饼的?(课件出示主题图)

  师:从图中你知道了哪些数学信息?

  生:一次最多能烙两张饼

  生:两面都要烙

  生:每面3分钟

  师:如果只烙一张饼需要多长时间?怎样烙?

  学生回答演示生:6分钟。烙一面需要3分钟,两面就要6分钟。

  师:烙两张饼最少需要几分钟?怎样烙?

  学生回答并演示

  生:6分钟。因为一口锅可以烙两张饼,可以同时烙两张饼的正面和反面,就和一张饼一样,也是需要6分钟。

  师:如果烙三张饼呢?最少需要几分钟?

  师:这么多答案,下面请同学们先思考,操作一下,再以小组为单位,用圆片代表3张饼,在桌子上摆一摆,说一说,然后将你们的方案,填到你们的表格中。

  小组活动

  师:哪个小组愿意上来说说你们是怎么烙的?(两人合作一人填表,一个操作)

  方法1:

  生1:先两张同时烙好,需要6分,再烙好剩下的一张,需要6分,共烙4次,花了12分。

  师:有没有比他们更快的方案?

  方法2

  生2:第一次先烙饼

  1、饼2的正面,需要3分钟;第二次烙饼2的反面和饼3的正面,需要3分钟,第三次烙饼1和饼3的反面,也需要3分钟,总共用了9分钟,共烙3次。

  师:大家明白吗?谁再来演示演示。

  师:课件演示烙3张饼的最优方案。

  师边演示边讲解,其他学生一起操作:

  我们先烙饼1的正面和饼2的正面,3分钟后,把饼2拿出来,再同时烙饼1的反面和饼3的`正面,3分钟后,饼1熟了,接下来再同时烙饼2的反面和饼3的反面,3分钟后饼2和饼3也熟了。

  师:这种方法为什么快?

  生:锅里一直都有两张饼。(课件出示:烙3张饼的两种方案)

  师小结:从表格中我们也可以看出,用这种方法时,锅里每次都有两张饼,这样不浪费时间,烙的最快,我们就把这种方法叫做烙3张饼的最佳方案。

  (4)拓展提高,总结方法师:烙4张饼怎样烙最快?

  生:2张2张地烙,需要12分钟

  师:烙5张饼怎样最快呢?(同位交流)生:先烙2张,再用最佳方法烙3张,用15分钟

  师:烙6张饼,怎样烙最节省时间?

  生:用最佳方法烙3张2次,用18分钟生:2张2张的烙3次,也是用18分钟

  师:这两种方法都是用18分钟,你比较喜欢哪一种?为什么?

  生:我喜欢3张3张的烙,这种方法比较好玩。

  生:我喜欢2张2张的烙,这种方法省劲,3张3张烙太麻烦了。

  师:我也喜欢2张2张的烙,同样的时间,这种方法比较省劲些。师:烙7张饼,最快需要几分钟?

  生抢答:21分钟

  师:这么快就想出来了,说说你的想法依次说出8张、9张、10张饼的烙法

  师:观察这张表,你能发现什么规律?

  生:每多烙一张饼,时间就多用三分钟,你看5张饼是15分钟,6张饼是18分钟,那7张饼就是21分钟

  规律1:用最优化的方法烙,饼的张数乘每面所用的时间,就是所用的最少时间

  板书:每面所用的时间×饼的张数=所用的最少时间

  师:从饼的张数和烙饼的方法上,你还发现了什么?

  规律2:我还发现了双数张时是2张2张的烙,超过3张的单数张都用烙3张饼的最佳方法

  师:如果烙20xx张饼需要多少时间?

  3、实际应用

  (1)师:其实在我们生活中经常会用到这样的问题,大家看。(课件出示早晨时间安排)学生写出流程图,再写出计算过程

  (2)师:同样在美味餐厅里遇到了一些问题,需要大家帮忙解决。(课件出示早晨时间安排)

  (课件出示星期天,餐厅里来了3位客人,他们每人点了两个菜,假设两个厨师做每个菜的时间都相等,应该按怎样的顺序炒菜?)

  师:先想一想,再和挨着的同学说一说。谁来告诉大家,应该按怎样的顺序?你的理由呢?还有没有其他的方法?

  小结:炒菜的时间相等,等候的时间不一样,哪一种方法能让客人等候的时间短一些呢?(同时进行尊老爱幼思想的渗透。)

  (3)生活中还有没有这样的例子?请你说一说。

  4、小结:

  师:这节课学习了什么内容,大家有什么收获?

  小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。

人教版小学数学经典教学设计12

  【教学内容】:

  版本、章、节

  【教材分析】:

  1.课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

  2.本节核心内容的功能和价值(为什么学本节内容);

  【学情分析】:

  1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

  2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线。

  3.学生认知障碍点:学生形成本节课知识时最主要的障碍点。

  【设计思路】:

  现本节课的教法学法及体现的理念支撑。

  【教学目标】:

  教学目标的确定应注意按照新课程的三维目标体系进行分析

  【教学重点和难点】:

  【教学过程】:

  教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。

  板书设计:需要一直留在黑板上主板书

  学生学习活动评价设计:设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。

  【教学反思】:

  教学反思可以从以下几个方面思考,不必面面俱到:

  1.反思在备课过程中对教材内容、教学理论、学习方法的.认知变化。

  2.反思教学设计的落实情况,学生在教学过程中的问题,出现问题的原因是什么,如何解决等,避免空谈出现的问题而不思考出现的原因,也不思考解决方案。

  3.对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计教学反馈,实际的改进效果如何。

  4.如果让你重新上这节课,你会怎样上?有什么新想法吗?或当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?

人教版小学数学经典教学设计13

  教学要求:

  1.使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2.使学生体会数学与生活的联系,感受数学的作用与价值,逐步培养学生的数学意识和实践能力。

  教学重点:

  指导学生应用面积计算的知识解决铺地砖的实际问题,从实际需要出发,合理地选择所需的地砖,根据不同要求灵活解决实际问题。

  教学难点:

  灵活运用面积计算的知识解决实际问题。

  课前准备:

  1、学生每组准备一个圈尺。

  2、调查市面上的几种地砖的规格,计下它们的尺寸。

  教学过程:

一、揭示课题

  1.让学生说说装修住房客厅里一般铺什么,怎样知道要用多少块地砖。接着按教材提出任务。

  2.说明课题,并板书:铺地砖。

  二、小组活动

  1.提问:在客厅里铺地砖,首先要做哪些工作让学生相互讨论后在班内交流。说明需要知道客厅的长、宽和地砖的规格。

  2.学生汇报所调查的地砖的规格。

  3.出示客厅的长、宽和三种地砖的规格。

  4.小组讨论。

  (1)让学生分小组讨论、计算,然后汇报不同规格地砖块数的计算方法和结果,老师可以板书出来。再引导学生按实际情况想到各是怎样拼接的,了解拼接太多就不美观。

  (2)提出美观要求,让学生讨论好的办法,每组计算后填表,然后在班内交流,得出比较好的`办法。

  (3)提出四周铺15厘米的大理石条,让学生讨论要怎样计算。

  (4)你还有什么更好的办法使得地板更美观?学生讨论后。

  三、测量、计算

  1.提出要在教室里铺地砖,必须做哪些工作,怎样计算的问题。

  2.分小组进行测量、讨论和计划、计算。

  3.各小组汇报每组的计划,在班内交流、比较。

  四、活动小结

  五、课外延伸

  运用这节课所学的知识,为你的房间设计一个合理的铺地砖方案。

人教版小学数学经典教学设计14

  教学内容:

  教材第88、89页的内容及第91页练习十七的第1、2题。

  教学目标:

  1.理解两个数的公倍数和最小公倍数的意义。

  2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  教学重点:理解两个数的公倍数和最小公倍数的意义

  教学难点:自主探索并总结找最小公倍数的方法.

  教学具准备:多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

  教学方法:小组合作谈话法

  教学过程:

  一、创设情景,生成问题:

  前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

  二、探索交流,解决问题

  1.在数轴上标出4、6的倍数所在的点。

  拿出老师课前发的画有两条直线的纸。

  在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

  2.引入公倍数。

  (l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

  (2)观察:从4和6的倍数中你发现了什么?

  (3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

  (4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

  说说看,什么叫两个数的公倍数?

  3.用集合图表示。

  如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

  4.引人最小公倍数。

  学生汇报后问:

  (1)为什么三个部分里都要添上省略号?

  (2)4和6的公倍数还有哪些?有没有最大公倍数?

  (3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

  4的倍数6的倍数

  4,8,

  16,20,…

  12,24,

  4和6的公倍数:

  5.引出例1。

  前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

  (1)操作探究。

  学生任意选择操作方式。

  ①用长方形学具拼正方形。

  ②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

  (2)反馈并揭示意义。

  ①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

  ②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

  ③正方形边长还有可能是几?你是怎样知道的?

  ④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的.最小公倍数。

  思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

  ⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。

  三、巩固应用,内化提高

  (1)画一画,说一说。

  小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

  引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

  (2)完成教材第89页的“做一做”。

  学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

  (3)独立完成教材第91页练习十七的第2题。

  (4)完成教材第91页练习十七的第1题。

  指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

  四、回顾整理、反思提升。

  通过今天的学习,你有什么收获?

  本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

  板书设计:

  最小公倍数(一)

  4的倍数:4、8、12、16、20、24、28、36……

  6的倍数:6、12、18、24、30、36……

  4和6的公倍数:12、24、36……

  4和6的最小公倍数:12

  教后反思:

  优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

  不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。

人教版小学数学经典教学设计15

  教学目标:

  1.理解利率的含义,体会它在实际生活中的应用。、

  2.能应用分数、百分数的知识,灵活解答有关“利息”的问题。3.培养学生认真思考的学习习惯。

  重点难点:

  理解概念,正确解答有关“利息”的实际问题。

  教学用具:

  实物投影。

  教学过程:

  一、学前导入:

  人们常常把暂时不用的钱存入银行储蓄起来。储蓄不仅可以支援国家建设,也使得个人钱财更安全和有计划,还可以增加一些收入。

  二、展示学习目标:

  理解利率概念,学会解决有关利率的.实际问题。

  三、自学指导:

  1.什么是本金?什么是利息?什么是利率?2.利息如何计算?明确:

  1.在银行存款的方式有多种,如活期、整存整取、零存整取等。存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。2.利息=本金×利率×时间

  国家规定,存款的利息要按5%的税率纳税。

  四、巩固练习:

  出示例题:老奶奶存1000元,两年后可以去会多少钱?(学生板书演示)老师提醒:存期两年,利率是4.68%,还要扣去5%的利息税。1.1000×4.68%×2=93.6(元)

  93.6×5%=4.68(元)

  1000+93.6-4.68=1088.92(元)2.1000×4.68%×2=93.6(元)

  1000+93.6×(1-5%)=1088.92(元)

  学生说出自己的解题思路,老师归纳:

  第一种方法先算利息,再求利息税,最后用本金+利息-利息税;第二种方法也是先算利息,再用本金+税后利息。都正确。

  五、作业安排:

  课本练习二十三第6、7题。

【小学数学教学设计】相关文章:

(经典)小学数学教学设计09-15

【精选】小学数学教学设计07-05

小学数学教学设计01-05

小学数学教学设计01-08

小学数学的教学设计03-25

小学数学比教学设计05-10

小学数学的教学设计10-09

小学数学教学设计[优秀]09-19

小学数学教学设计优秀09-20

关于小学数学教学设计03-17